Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book describes the direct problems and the inverse problem of the multidimensional Schrödinger operator with a periodic potential. This concerns perturbation theory and constructive determination of the spectral invariants and finding the periodic potential from the given Bloch eigenvalues. The unique method of this book derives the asymptotic formulas for Bloch eigenvalues and Bloch functions for arbitrary dimension. Moreover, the measure of the iso-energetic surfaces in the high energy region is construct and estimated. It implies the validity of the Bethe-Sommerfeld conjecture for…mehr
The book describes the direct problems and the inverse problem of the multidimensional Schrödinger operator with a periodic potential. This concerns perturbation theory and constructive determination of the spectral invariants and finding the periodic potential from the given Bloch eigenvalues. The unique method of this book derives the asymptotic formulas for Bloch eigenvalues and Bloch functions for arbitrary dimension. Moreover, the measure of the iso-energetic surfaces in the high energy region is construct and estimated. It implies the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed in this book, the spectral invariants of the multidimensional operator from the given Bloch eigenvalues are determined. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential. This way the possibility to determine the potential constructively by using Bloch eigenvalues as input data is given. In the end an algorithm for the unique determination of the potential is given.
Oktay Veliev received his B.S. degree in Mathematics in 1977 and Ph.D. degree in Mathematics in 1980 from Moscow State University, earning a Doctor of Sciences degree in 1989. From 1980 to 1983, he was a researcher and then senior researcher (1983-1988) at the Institute of Mathematics of the Academy of Sciences of Azerbaijan SSR. At Baku State University (Azerbaijan) he has been an Associate Professor (1988-1991), a Professor (1991-1992), and Head of the Department of Functional Analysis (1992-1997). Between 1993 and 1997, he was President of the Azerbaijan Mathematical Society. He was a visiting Professor at the University of Nantes (France), the Institute of Mathematics at the ETH (Switzerland), and Sussex University (England). From 1997 to 2002 he was a Professor at Dokuz Eylul University (Turkey), and since 2003 has been a Professor at Dogus University (Turkey). He has received grants from the American Mathematical Society and the International Science Foundation (GrantNo. MVVOOO).
Inhaltsangabe
Preface.- Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions.- Constructive Determination of the Spectral Invariants.- Periodic Potential from the Spectral Invariants.- Conclusions.
Preliminary Facts.- From One-dimensional to Multidimensional.- Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions.- Constructive Determination of the Spectral Invariants.- Periodic Potential from the Spectral Invariants.- Conclusions and Some Generalization.
Preface.- Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions.- Constructive Determination of the Spectral Invariants.- Periodic Potential from the Spectral Invariants.- Conclusions.
Preliminary Facts.- From One-dimensional to Multidimensional.- Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions.- Constructive Determination of the Spectral Invariants.- Periodic Potential from the Spectral Invariants.- Conclusions and Some Generalization.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497