Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Variational systems, an introduction.- Extension of the class of Markov controls.- Limit laws for multifunctions applied to an optimization problem.- Variational properties of EPI-convergence, applications to limit analysis problems in mechanics and duality theory.- Slow and heavy viable trajectories of controlled problems. Smooth viability domains.- A new class of evolution equation in a Hilbert space.- A fixed point theorem for subsets of L1.- Modelling sets.- On a definition of ?-convergence of measures.- Strong laws of large numbers for multivalued random variables.- Approaches to weak convergence.- Critical points and evolution equations.- Decomposability as a substitute for convexity.- Multifunctions associated with parameterized classes of constrained optimization problems.- Continuity of measurable convex multifunctions.- Some bang-bang theorems.
Variational systems, an introduction.- Extension of the class of Markov controls.- Limit laws for multifunctions applied to an optimization problem.- Variational properties of EPI-convergence, applications to limit analysis problems in mechanics and duality theory.- Slow and heavy viable trajectories of controlled problems. Smooth viability domains.- A new class of evolution equation in a Hilbert space.- A fixed point theorem for subsets of L1.- Modelling sets.- On a definition of ?-convergence of measures.- Strong laws of large numbers for multivalued random variables.- Approaches to weak convergence.- Critical points and evolution equations.- Decomposability as a substitute for convexity.- Multifunctions associated with parameterized classes of constrained optimization problems.- Continuity of measurable convex multifunctions.- Some bang-bang theorems.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826