Sampada Dhole, Vinayak Bairagi
Multimodal Biometric Identification System (eBook, PDF)
Case Study of Real-Time Implementation
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Sampada Dhole, Vinayak Bairagi
Multimodal Biometric Identification System (eBook, PDF)
Case Study of Real-Time Implementation
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book presents a novel method of multimodal biometric fusion using a random selection of biometrics, which covers a new method of feature extraction, a new framework of sensor level and feature level fusion. Most of the biometric systems presently use unimodal systems which have several limitations.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Sampada DholeMultimodal Biometric Identification System (eBook, ePUB)52,95 €
- AI, Blockchain, and Metaverse in Hospitality and Tourism Industry 4.0 (eBook, PDF)52,95 €
- Advanced Computing Techniques for Optimization in Cloud (eBook, PDF)52,95 €
- AI, Blockchain, and Metaverse in Hospitality and Tourism Industry 4.0 (eBook, ePUB)52,95 €
- Qiu YiThe Design and Implementation of the RT-Thread Operating System (eBook, PDF)65,95 €
- Richard HundhausenProfessional Scrum Development with Azure DevOps (eBook, PDF)21,95 €
- Richard FoxLinux with Operating System Concepts (eBook, PDF)87,95 €
-
-
-
This book presents a novel method of multimodal biometric fusion using a random selection of biometrics, which covers a new method of feature extraction, a new framework of sensor level and feature level fusion. Most of the biometric systems presently use unimodal systems which have several limitations.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 142
- Erscheinungstermin: 12. November 2024
- Englisch
- ISBN-13: 9781040148136
- Artikelnr.: 72273441
- Verlag: Taylor & Francis
- Seitenzahl: 142
- Erscheinungstermin: 12. November 2024
- Englisch
- ISBN-13: 9781040148136
- Artikelnr.: 72273441
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Sampada Dhole has completed his PhD in Electronics from Bharati Vidyapeeth (Deemed to be University) College of Engineering, India, in 2017 with specialisation in Image Processing and Biometrics. Her research interest includes the Image Processing and Multimodal. She has published more than 30 research papers including 7 Scopus indexed. She has filed 2 patents and 1 copyright in her technical field. She has worked as a Reviewer for many International and National Conferences. She is working as Assistant Professor in the Department of E&TC at Bharati Vidyapeeth's College of Engineering for Women, SPPU, Pune, India. She has 21 years of teaching experience. She is a member of the Technical Society ISTE, India.
Vinayak Bairagi has completed ME (Electronics) from Sinhgad COE, Pune, India, in 2007 (1st Rank in SPPU). Savitribai Phule Pune University has awarded him a PhD degree in Engineering. He has teaching experience of 13 years and research experience of 8 years. He has filed 12 patents and 5 copyrights in his technical field. He has published more than 60 papers, of which 26 papers are in international journals. He has authored/edited more than eight books/book chapters with multiple publishing concerns and he is a reviewer for nine scientific journals. He has received grants from DST SERB, UoP-BUCD, GYTI. He has received more than 14 awards, which include the National Level Young Engineer Award (2014), the ISTE National level Young Researcher Award (2015) for his excellence in the field of engineering, and IETE M N SAHA Memorial Award-2018. He is a member of INENG (UK), IETE (India), ISTE (India), and IEI & BMS (India). He had worked on Image Compression at the College of Engineering, Pune, under Pune University. His main research interests include Medical Imaging, Machine Learning, Computer-Aided Diagnosis, and Medical Signal Processing. Currently, he is associated with the AISSMS Institute of Information Technology, Pune, India, as Professor in Electronics and Telecommunication Engineering. He is a recognised PhD guide in Electronics Engineering of Savitribai Phule Pune University. Presently he is guiding seven PhD students.
Vinayak Bairagi has completed ME (Electronics) from Sinhgad COE, Pune, India, in 2007 (1st Rank in SPPU). Savitribai Phule Pune University has awarded him a PhD degree in Engineering. He has teaching experience of 13 years and research experience of 8 years. He has filed 12 patents and 5 copyrights in his technical field. He has published more than 60 papers, of which 26 papers are in international journals. He has authored/edited more than eight books/book chapters with multiple publishing concerns and he is a reviewer for nine scientific journals. He has received grants from DST SERB, UoP-BUCD, GYTI. He has received more than 14 awards, which include the National Level Young Engineer Award (2014), the ISTE National level Young Researcher Award (2015) for his excellence in the field of engineering, and IETE M N SAHA Memorial Award-2018. He is a member of INENG (UK), IETE (India), ISTE (India), and IEI & BMS (India). He had worked on Image Compression at the College of Engineering, Pune, under Pune University. His main research interests include Medical Imaging, Machine Learning, Computer-Aided Diagnosis, and Medical Signal Processing. Currently, he is associated with the AISSMS Institute of Information Technology, Pune, India, as Professor in Electronics and Telecommunication Engineering. He is a recognised PhD guide in Electronics Engineering of Savitribai Phule Pune University. Presently he is guiding seven PhD students.
Preface....................................................................................................................
viii
Author
Biography........................................................................................................x
Chapter 1
Introduction...........................................................................................1
1.1 Biometric Identification
System.................................................1
1.1.1 Enrolment
Module........................................................2
1.2 Current Status of Biometric Identification Systems...................3
1.3 Applications of Biometric
Systems............................................5
References.............................................................................................5
Chapter 2 An Overview of
Biometrics..................................................................6
2.1
Biometrics...................................................................................6
2.1.1 Advantages of
Biometrics.............................................7
2.1.2 Disadvantages of Biometrics.........................................8
2.1.3 Types of
Biometrics.......................................................8
2.2
Fingerprint..................................................................................8
2.2.1 Minutiae-based Technique............................................9
2.2.2 Correlation-based Technique........................................9
2.2.3 Advantages and Disadvantages of Fingerprint
Biometrics.....................................................................9
2.2.4 Applications of Fingerprinting.................................... 10
2.3 Iris
Recognition........................................................................
10
2.3.1 Advantages of Iris Technology.................................... 10
2.3.2 Disadvantages of Iris Technology............................... 10
2.3.3 Applications of Iris Recognition System..................... 11
2.3.4 Real-Life
Applications................................................ 11
2.4 Retinal Pattern
Biometrics....................................................... 11
2.4.1 Advantages of Retinal Recognition............................. 12
2.4.2 Disadvantages of Retinal Recognition........................ 12
2.5 Facial Recognition
Biometrics................................................. 12
2.5.1 Challenges in Face Recognition.................................. 13
2.5.2 Advantages of Biometric Facial Recognition.............. 13
2.5.3 Disadvantages of Biometric Face Recognition........... 13
2.5.4
Applications.................................................................
13
2.6
Handwriting..............................................................................
14
2.6.1 Advantages and Disadvantages of Handwriting
Recognition.................................................................
14
2.7 Voice
Biometric........................................................................
14
2.7.1
Advantages..................................................................
15
2.7.2
Disadvantages..............................................................
15
2.8 Ear
Recognition........................................................................
15
2.8.1
Advantages..................................................................
15
2.8.2
Disadvantages..............................................................
15
2.9
Summary..................................................................................
16
Chapter 3 Motivation behind Multimodal Biometric
Systems............................ 17
3.1
Introduction..............................................................................
17
3.1.1 Advantages of Multimodal Systems over
Unimodal Systems...................................................... 18
3.2 Multimodal Biometric Integration Architecture...................... 19
3.3 Multimodal Biometric Integration Scenarios...........................
19
3.4 Multimodal Biometric Fusion
Levels....................................... 21
3.4.1 Pre-mapping
Fusion.................................................... 21
3.4.2 Post-mapping
Fusion...................................................25
References...........................................................................................28
Chapter 4 Performance Measurement Parameters for Biometric
Systems.......... 31
4.1 Performance Measurement Parameters....................................
31
4.2
Materials...................................................................................
33
4.2.1 Fingerprint
Database...................................................34
4.2.2 Face
Database..............................................................34
4.2.3 Hand
Database............................................................ 35
4.3
Summary..................................................................................
35
Reference.............................................................................................
35
Chapter 5 Unimodal Biometric
Systems..............................................................36
5.1 Unimodal Biometric Identification
System..............................36
5.1.1 DWT Feature Extraction System................................ 37
5.1.2 Gabor Feature Extraction System...............................38
5.1.3 Curvelet
Transform.....................................................40
5.1.4 Contourlet
Transform.................................................. 41
5.2 Fingerprint as a Biometric
Modality........................................ 41
5.2.1 Techniques for Fingerprint Matching......................... 42
5.2.2 Minutiae-Based Feature Extraction System................ 42
5.2.3 Texture-Based Fingerprint Recognition System......... 45
5.3 Face as a Biometric
Modality...................................................49
5.3.1 Texture-Based Face Recognition System....................49
5.4 Hand Geometry as a Biometric Modality................................
51
5.4.1 Hand Geometry Recognition Using 12 Geometry
Features.......................................................................
55
5.4.2 Hand Geometry Recognition Using 21 Geometry
Features.......................................................................56
5.5 Palmprint as a Biometric
Modality.......................................... 58
5.5.1 Contourlet
Transform..................................................63
Contents vii
5.6 Euclidean Distance as a
Classifier............................................ 67
5.7
Summary..................................................................................
71
References...........................................................................................
71
Chapter 6 Multimodal Biometric Identification Systems Using
Sensor-Level
Fusion............................................................................
72
6.1 Multimodal Biometric Identification System...........................
72
6.2 Sensor-Level
Fusion................................................................. 72
6.3 Basic Structure for Sensor-Level
Fusion.................................. 73
6.4 Sensor-Level Fusion of Low-Frequency and High-
Frequency
Features...................................................................
75
6.5 Sensor-Level Fusion of Low-Frequency Features.................... 78
6.6
Summary..................................................................................
81
Chapter 7 Multimodal Biometric Identification Systems Using
Feature-Level
Fusion...........................................................................82
7.1 Multimodal Biometric
System.................................................82
7.2 Feature-Level Fusion Using Block Variance Features.............83
7.2.1 Feature-Level Fusion of 128 Feature Vector...............83
7.2.2 Feature-Level Fusion of 32 Feature Vector.................85
7.2.3 Concatenated Features................................................
91
7.2.4 Sum
Features...............................................................92
7.2.5 Maximum
Features.....................................................92
7.2.6 Minimum
Features......................................................92
7.3 Feature-Level Fusion Using Contourlet Transform Features...92
7.4 Normalisation Technique for Hand Geometry Features..........95
7.5 Linear Discriminate Analysis
(LDA).......................................97
7.6
Summary................................................................................
100
Chapter 8 Result and
Discussion.......................................................................
101
8.1 Result and
Discussion............................................................. 101
8.1.1 Databases
Used......................................................... 101
8.1.2 Results of Performance Measurement
Parameters of the Biometric Systems....................... 101
8.1.3 Results of Performance Measurement
Parameters of Multimodal Recognition System....... 104
8.1.4 Score Distribution of Biometric System.................... 113
8.1.5
Analysis.....................................................................
120
8.2
Conclusions.............................................................................
122
8.3 Future
Scope...........................................................................124
Index.......................................................................................................................
125
viii
Author
Biography........................................................................................................x
Chapter 1
Introduction...........................................................................................1
1.1 Biometric Identification
System.................................................1
1.1.1 Enrolment
Module........................................................2
1.2 Current Status of Biometric Identification Systems...................3
1.3 Applications of Biometric
Systems............................................5
References.............................................................................................5
Chapter 2 An Overview of
Biometrics..................................................................6
2.1
Biometrics...................................................................................6
2.1.1 Advantages of
Biometrics.............................................7
2.1.2 Disadvantages of Biometrics.........................................8
2.1.3 Types of
Biometrics.......................................................8
2.2
Fingerprint..................................................................................8
2.2.1 Minutiae-based Technique............................................9
2.2.2 Correlation-based Technique........................................9
2.2.3 Advantages and Disadvantages of Fingerprint
Biometrics.....................................................................9
2.2.4 Applications of Fingerprinting.................................... 10
2.3 Iris
Recognition........................................................................
10
2.3.1 Advantages of Iris Technology.................................... 10
2.3.2 Disadvantages of Iris Technology............................... 10
2.3.3 Applications of Iris Recognition System..................... 11
2.3.4 Real-Life
Applications................................................ 11
2.4 Retinal Pattern
Biometrics....................................................... 11
2.4.1 Advantages of Retinal Recognition............................. 12
2.4.2 Disadvantages of Retinal Recognition........................ 12
2.5 Facial Recognition
Biometrics................................................. 12
2.5.1 Challenges in Face Recognition.................................. 13
2.5.2 Advantages of Biometric Facial Recognition.............. 13
2.5.3 Disadvantages of Biometric Face Recognition........... 13
2.5.4
Applications.................................................................
13
2.6
Handwriting..............................................................................
14
2.6.1 Advantages and Disadvantages of Handwriting
Recognition.................................................................
14
2.7 Voice
Biometric........................................................................
14
2.7.1
Advantages..................................................................
15
2.7.2
Disadvantages..............................................................
15
2.8 Ear
Recognition........................................................................
15
2.8.1
Advantages..................................................................
15
2.8.2
Disadvantages..............................................................
15
2.9
Summary..................................................................................
16
Chapter 3 Motivation behind Multimodal Biometric
Systems............................ 17
3.1
Introduction..............................................................................
17
3.1.1 Advantages of Multimodal Systems over
Unimodal Systems...................................................... 18
3.2 Multimodal Biometric Integration Architecture...................... 19
3.3 Multimodal Biometric Integration Scenarios...........................
19
3.4 Multimodal Biometric Fusion
Levels....................................... 21
3.4.1 Pre-mapping
Fusion.................................................... 21
3.4.2 Post-mapping
Fusion...................................................25
References...........................................................................................28
Chapter 4 Performance Measurement Parameters for Biometric
Systems.......... 31
4.1 Performance Measurement Parameters....................................
31
4.2
Materials...................................................................................
33
4.2.1 Fingerprint
Database...................................................34
4.2.2 Face
Database..............................................................34
4.2.3 Hand
Database............................................................ 35
4.3
Summary..................................................................................
35
Reference.............................................................................................
35
Chapter 5 Unimodal Biometric
Systems..............................................................36
5.1 Unimodal Biometric Identification
System..............................36
5.1.1 DWT Feature Extraction System................................ 37
5.1.2 Gabor Feature Extraction System...............................38
5.1.3 Curvelet
Transform.....................................................40
5.1.4 Contourlet
Transform.................................................. 41
5.2 Fingerprint as a Biometric
Modality........................................ 41
5.2.1 Techniques for Fingerprint Matching......................... 42
5.2.2 Minutiae-Based Feature Extraction System................ 42
5.2.3 Texture-Based Fingerprint Recognition System......... 45
5.3 Face as a Biometric
Modality...................................................49
5.3.1 Texture-Based Face Recognition System....................49
5.4 Hand Geometry as a Biometric Modality................................
51
5.4.1 Hand Geometry Recognition Using 12 Geometry
Features.......................................................................
55
5.4.2 Hand Geometry Recognition Using 21 Geometry
Features.......................................................................56
5.5 Palmprint as a Biometric
Modality.......................................... 58
5.5.1 Contourlet
Transform..................................................63
Contents vii
5.6 Euclidean Distance as a
Classifier............................................ 67
5.7
Summary..................................................................................
71
References...........................................................................................
71
Chapter 6 Multimodal Biometric Identification Systems Using
Sensor-Level
Fusion............................................................................
72
6.1 Multimodal Biometric Identification System...........................
72
6.2 Sensor-Level
Fusion................................................................. 72
6.3 Basic Structure for Sensor-Level
Fusion.................................. 73
6.4 Sensor-Level Fusion of Low-Frequency and High-
Frequency
Features...................................................................
75
6.5 Sensor-Level Fusion of Low-Frequency Features.................... 78
6.6
Summary..................................................................................
81
Chapter 7 Multimodal Biometric Identification Systems Using
Feature-Level
Fusion...........................................................................82
7.1 Multimodal Biometric
System.................................................82
7.2 Feature-Level Fusion Using Block Variance Features.............83
7.2.1 Feature-Level Fusion of 128 Feature Vector...............83
7.2.2 Feature-Level Fusion of 32 Feature Vector.................85
7.2.3 Concatenated Features................................................
91
7.2.4 Sum
Features...............................................................92
7.2.5 Maximum
Features.....................................................92
7.2.6 Minimum
Features......................................................92
7.3 Feature-Level Fusion Using Contourlet Transform Features...92
7.4 Normalisation Technique for Hand Geometry Features..........95
7.5 Linear Discriminate Analysis
(LDA).......................................97
7.6
Summary................................................................................
100
Chapter 8 Result and
Discussion.......................................................................
101
8.1 Result and
Discussion............................................................. 101
8.1.1 Databases
Used......................................................... 101
8.1.2 Results of Performance Measurement
Parameters of the Biometric Systems....................... 101
8.1.3 Results of Performance Measurement
Parameters of Multimodal Recognition System....... 104
8.1.4 Score Distribution of Biometric System.................... 113
8.1.5
Analysis.....................................................................
120
8.2
Conclusions.............................................................................
122
8.3 Future
Scope...........................................................................124
Index.......................................................................................................................
125
Preface....................................................................................................................
viii
Author
Biography........................................................................................................x
Chapter 1
Introduction...........................................................................................1
1.1 Biometric Identification
System.................................................1
1.1.1 Enrolment
Module........................................................2
1.2 Current Status of Biometric Identification Systems...................3
1.3 Applications of Biometric
Systems............................................5
References.............................................................................................5
Chapter 2 An Overview of
Biometrics..................................................................6
2.1
Biometrics...................................................................................6
2.1.1 Advantages of
Biometrics.............................................7
2.1.2 Disadvantages of Biometrics.........................................8
2.1.3 Types of
Biometrics.......................................................8
2.2
Fingerprint..................................................................................8
2.2.1 Minutiae-based Technique............................................9
2.2.2 Correlation-based Technique........................................9
2.2.3 Advantages and Disadvantages of Fingerprint
Biometrics.....................................................................9
2.2.4 Applications of Fingerprinting.................................... 10
2.3 Iris
Recognition........................................................................
10
2.3.1 Advantages of Iris Technology.................................... 10
2.3.2 Disadvantages of Iris Technology............................... 10
2.3.3 Applications of Iris Recognition System..................... 11
2.3.4 Real-Life
Applications................................................ 11
2.4 Retinal Pattern
Biometrics....................................................... 11
2.4.1 Advantages of Retinal Recognition............................. 12
2.4.2 Disadvantages of Retinal Recognition........................ 12
2.5 Facial Recognition
Biometrics................................................. 12
2.5.1 Challenges in Face Recognition.................................. 13
2.5.2 Advantages of Biometric Facial Recognition.............. 13
2.5.3 Disadvantages of Biometric Face Recognition........... 13
2.5.4
Applications.................................................................
13
2.6
Handwriting..............................................................................
14
2.6.1 Advantages and Disadvantages of Handwriting
Recognition.................................................................
14
2.7 Voice
Biometric........................................................................
14
2.7.1
Advantages..................................................................
15
2.7.2
Disadvantages..............................................................
15
2.8 Ear
Recognition........................................................................
15
2.8.1
Advantages..................................................................
15
2.8.2
Disadvantages..............................................................
15
2.9
Summary..................................................................................
16
Chapter 3 Motivation behind Multimodal Biometric
Systems............................ 17
3.1
Introduction..............................................................................
17
3.1.1 Advantages of Multimodal Systems over
Unimodal Systems...................................................... 18
3.2 Multimodal Biometric Integration Architecture...................... 19
3.3 Multimodal Biometric Integration Scenarios...........................
19
3.4 Multimodal Biometric Fusion
Levels....................................... 21
3.4.1 Pre-mapping
Fusion.................................................... 21
3.4.2 Post-mapping
Fusion...................................................25
References...........................................................................................28
Chapter 4 Performance Measurement Parameters for Biometric
Systems.......... 31
4.1 Performance Measurement Parameters....................................
31
4.2
Materials...................................................................................
33
4.2.1 Fingerprint
Database...................................................34
4.2.2 Face
Database..............................................................34
4.2.3 Hand
Database............................................................ 35
4.3
Summary..................................................................................
35
Reference.............................................................................................
35
Chapter 5 Unimodal Biometric
Systems..............................................................36
5.1 Unimodal Biometric Identification
System..............................36
5.1.1 DWT Feature Extraction System................................ 37
5.1.2 Gabor Feature Extraction System...............................38
5.1.3 Curvelet
Transform.....................................................40
5.1.4 Contourlet
Transform.................................................. 41
5.2 Fingerprint as a Biometric
Modality........................................ 41
5.2.1 Techniques for Fingerprint Matching......................... 42
5.2.2 Minutiae-Based Feature Extraction System................ 42
5.2.3 Texture-Based Fingerprint Recognition System......... 45
5.3 Face as a Biometric
Modality...................................................49
5.3.1 Texture-Based Face Recognition System....................49
5.4 Hand Geometry as a Biometric Modality................................
51
5.4.1 Hand Geometry Recognition Using 12 Geometry
Features.......................................................................
55
5.4.2 Hand Geometry Recognition Using 21 Geometry
Features.......................................................................56
5.5 Palmprint as a Biometric
Modality.......................................... 58
5.5.1 Contourlet
Transform..................................................63
Contents vii
5.6 Euclidean Distance as a
Classifier............................................ 67
5.7
Summary..................................................................................
71
References...........................................................................................
71
Chapter 6 Multimodal Biometric Identification Systems Using
Sensor-Level
Fusion............................................................................
72
6.1 Multimodal Biometric Identification System...........................
72
6.2 Sensor-Level
Fusion................................................................. 72
6.3 Basic Structure for Sensor-Level
Fusion.................................. 73
6.4 Sensor-Level Fusion of Low-Frequency and High-
Frequency
Features...................................................................
75
6.5 Sensor-Level Fusion of Low-Frequency Features.................... 78
6.6
Summary..................................................................................
81
Chapter 7 Multimodal Biometric Identification Systems Using
Feature-Level
Fusion...........................................................................82
7.1 Multimodal Biometric
System.................................................82
7.2 Feature-Level Fusion Using Block Variance Features.............83
7.2.1 Feature-Level Fusion of 128 Feature Vector...............83
7.2.2 Feature-Level Fusion of 32 Feature Vector.................85
7.2.3 Concatenated Features................................................
91
7.2.4 Sum
Features...............................................................92
7.2.5 Maximum
Features.....................................................92
7.2.6 Minimum
Features......................................................92
7.3 Feature-Level Fusion Using Contourlet Transform Features...92
7.4 Normalisation Technique for Hand Geometry Features..........95
7.5 Linear Discriminate Analysis
(LDA).......................................97
7.6
Summary................................................................................
100
Chapter 8 Result and
Discussion.......................................................................
101
8.1 Result and
Discussion............................................................. 101
8.1.1 Databases
Used......................................................... 101
8.1.2 Results of Performance Measurement
Parameters of the Biometric Systems....................... 101
8.1.3 Results of Performance Measurement
Parameters of Multimodal Recognition System....... 104
8.1.4 Score Distribution of Biometric System.................... 113
8.1.5
Analysis.....................................................................
120
8.2
Conclusions.............................................................................
122
8.3 Future
Scope...........................................................................124
Index.......................................................................................................................
125
viii
Author
Biography........................................................................................................x
Chapter 1
Introduction...........................................................................................1
1.1 Biometric Identification
System.................................................1
1.1.1 Enrolment
Module........................................................2
1.2 Current Status of Biometric Identification Systems...................3
1.3 Applications of Biometric
Systems............................................5
References.............................................................................................5
Chapter 2 An Overview of
Biometrics..................................................................6
2.1
Biometrics...................................................................................6
2.1.1 Advantages of
Biometrics.............................................7
2.1.2 Disadvantages of Biometrics.........................................8
2.1.3 Types of
Biometrics.......................................................8
2.2
Fingerprint..................................................................................8
2.2.1 Minutiae-based Technique............................................9
2.2.2 Correlation-based Technique........................................9
2.2.3 Advantages and Disadvantages of Fingerprint
Biometrics.....................................................................9
2.2.4 Applications of Fingerprinting.................................... 10
2.3 Iris
Recognition........................................................................
10
2.3.1 Advantages of Iris Technology.................................... 10
2.3.2 Disadvantages of Iris Technology............................... 10
2.3.3 Applications of Iris Recognition System..................... 11
2.3.4 Real-Life
Applications................................................ 11
2.4 Retinal Pattern
Biometrics....................................................... 11
2.4.1 Advantages of Retinal Recognition............................. 12
2.4.2 Disadvantages of Retinal Recognition........................ 12
2.5 Facial Recognition
Biometrics................................................. 12
2.5.1 Challenges in Face Recognition.................................. 13
2.5.2 Advantages of Biometric Facial Recognition.............. 13
2.5.3 Disadvantages of Biometric Face Recognition........... 13
2.5.4
Applications.................................................................
13
2.6
Handwriting..............................................................................
14
2.6.1 Advantages and Disadvantages of Handwriting
Recognition.................................................................
14
2.7 Voice
Biometric........................................................................
14
2.7.1
Advantages..................................................................
15
2.7.2
Disadvantages..............................................................
15
2.8 Ear
Recognition........................................................................
15
2.8.1
Advantages..................................................................
15
2.8.2
Disadvantages..............................................................
15
2.9
Summary..................................................................................
16
Chapter 3 Motivation behind Multimodal Biometric
Systems............................ 17
3.1
Introduction..............................................................................
17
3.1.1 Advantages of Multimodal Systems over
Unimodal Systems...................................................... 18
3.2 Multimodal Biometric Integration Architecture...................... 19
3.3 Multimodal Biometric Integration Scenarios...........................
19
3.4 Multimodal Biometric Fusion
Levels....................................... 21
3.4.1 Pre-mapping
Fusion.................................................... 21
3.4.2 Post-mapping
Fusion...................................................25
References...........................................................................................28
Chapter 4 Performance Measurement Parameters for Biometric
Systems.......... 31
4.1 Performance Measurement Parameters....................................
31
4.2
Materials...................................................................................
33
4.2.1 Fingerprint
Database...................................................34
4.2.2 Face
Database..............................................................34
4.2.3 Hand
Database............................................................ 35
4.3
Summary..................................................................................
35
Reference.............................................................................................
35
Chapter 5 Unimodal Biometric
Systems..............................................................36
5.1 Unimodal Biometric Identification
System..............................36
5.1.1 DWT Feature Extraction System................................ 37
5.1.2 Gabor Feature Extraction System...............................38
5.1.3 Curvelet
Transform.....................................................40
5.1.4 Contourlet
Transform.................................................. 41
5.2 Fingerprint as a Biometric
Modality........................................ 41
5.2.1 Techniques for Fingerprint Matching......................... 42
5.2.2 Minutiae-Based Feature Extraction System................ 42
5.2.3 Texture-Based Fingerprint Recognition System......... 45
5.3 Face as a Biometric
Modality...................................................49
5.3.1 Texture-Based Face Recognition System....................49
5.4 Hand Geometry as a Biometric Modality................................
51
5.4.1 Hand Geometry Recognition Using 12 Geometry
Features.......................................................................
55
5.4.2 Hand Geometry Recognition Using 21 Geometry
Features.......................................................................56
5.5 Palmprint as a Biometric
Modality.......................................... 58
5.5.1 Contourlet
Transform..................................................63
Contents vii
5.6 Euclidean Distance as a
Classifier............................................ 67
5.7
Summary..................................................................................
71
References...........................................................................................
71
Chapter 6 Multimodal Biometric Identification Systems Using
Sensor-Level
Fusion............................................................................
72
6.1 Multimodal Biometric Identification System...........................
72
6.2 Sensor-Level
Fusion................................................................. 72
6.3 Basic Structure for Sensor-Level
Fusion.................................. 73
6.4 Sensor-Level Fusion of Low-Frequency and High-
Frequency
Features...................................................................
75
6.5 Sensor-Level Fusion of Low-Frequency Features.................... 78
6.6
Summary..................................................................................
81
Chapter 7 Multimodal Biometric Identification Systems Using
Feature-Level
Fusion...........................................................................82
7.1 Multimodal Biometric
System.................................................82
7.2 Feature-Level Fusion Using Block Variance Features.............83
7.2.1 Feature-Level Fusion of 128 Feature Vector...............83
7.2.2 Feature-Level Fusion of 32 Feature Vector.................85
7.2.3 Concatenated Features................................................
91
7.2.4 Sum
Features...............................................................92
7.2.5 Maximum
Features.....................................................92
7.2.6 Minimum
Features......................................................92
7.3 Feature-Level Fusion Using Contourlet Transform Features...92
7.4 Normalisation Technique for Hand Geometry Features..........95
7.5 Linear Discriminate Analysis
(LDA).......................................97
7.6
Summary................................................................................
100
Chapter 8 Result and
Discussion.......................................................................
101
8.1 Result and
Discussion............................................................. 101
8.1.1 Databases
Used......................................................... 101
8.1.2 Results of Performance Measurement
Parameters of the Biometric Systems....................... 101
8.1.3 Results of Performance Measurement
Parameters of Multimodal Recognition System....... 104
8.1.4 Score Distribution of Biometric System.................... 113
8.1.5
Analysis.....................................................................
120
8.2
Conclusions.............................................................................
122
8.3 Future
Scope...........................................................................124
Index.......................................................................................................................
125