88,95 €
88,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
44 °P sammeln
88,95 €
88,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
44 °P sammeln
Als Download kaufen
88,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
44 °P sammeln
Jetzt verschenken
88,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
44 °P sammeln
  • Format: ePub

This research and reference text explores the finer details of Deep Learning models. It provides a brief outline on popular models including convolution neural networks (CNN), deep belief networks (DBN), autoencoders, residual neural networks (Res Nets). The text discusses some of the Deep Learning-based applications in gene identification. Sections in the book explore the foundation and necessity of deep learning in radiology, the application of deep learning in the area of cardiovascular imaging and deep learning applications in the area of fatty liver disease characterization and COVID19,…mehr

Produktbeschreibung
This research and reference text explores the finer details of Deep Learning models. It provides a brief outline on popular models including convolution neural networks (CNN), deep belief networks (DBN), autoencoders, residual neural networks (Res Nets). The text discusses some of the Deep Learning-based applications in gene identification. Sections in the book explore the foundation and necessity of deep learning in radiology, the application of deep learning in the area of cardiovascular imaging and deep learning applications in the area of fatty liver disease characterization and COVID19, respectively.

This reference text is highly relevant for medical professionals and researchers in the area of AI in medical imaging.

Key Features:

  • Discusses various diseases related to lung, heart, peripheral arterial imaging, as well as gene expression characterization and classification
  • Explores imaging applications, their complexities and the Deep Learning models employed to resolve them in detail
  • Provides state-of-the-art contributions while addressing doubts in multimodal research
  • Details the future of deep learning and big data in medical imaging

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

Autorenporträt
Professor Mainak Biswas is a computer scientist with specialization in the application of machine learning and deep learning in biomedical domain. His research is inspired from providing an effective solution for computer aided diagnosis for diverse diseases. His PhD specialization was in application of advanced machine learning and deep learning in complex tissue characterization and segmentation from ultrasound images of liver and carotid arteries. Dr. Biswas obtained his PhD from National Institute of Technology Goa.

Professor Jasjit S. Suri has spent over 30 years in the field of biomedical engineering/sciences, software and hardware engineering and its management. He received his Masters from University of Illinois, Chicago and Doctorate from University of Washington, Seattle. Dr. Suri was crowned with President's gold medal in 1980, one of the youngest Fellow of American Institute of Medical and Biological Engineering (AIMBE) for his outstanding contributions at Washington DC in 2004 and was also a recipient of Marquis Life Time Achievement Award for his outstanding contributions in 2018.