121,95 €
121,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
61 °P sammeln
121,95 €
121,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
61 °P sammeln
Als Download kaufen
121,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
61 °P sammeln
Jetzt verschenken
121,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
61 °P sammeln
  • Format: PDF

Understanding and predicting the performance of electromechanical systems is crucially important in the design of many modern products, and today's engineers and researchers are constantly seeking methods for optimizing these complex systems.
This important text/reference highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation. As multiphysics simulation is a broad and rapidly growing field, requiring an array of technical skills in different intersecting disciplines, this book presents a specific focus on electromechanical…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 12.27MB
Produktbeschreibung
Understanding and predicting the performance of electromechanical systems is crucially important in the design of many modern products, and today's engineers and researchers are constantly seeking methods for optimizing these complex systems.

This important text/reference highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation. As multiphysics simulation is a broad and rapidly growing field, requiring an array of technical skills in different intersecting disciplines, this book presents a specific focus on electromechanical systems as the target application.

Topics and features:

  • Introduces the concept of design via simulation, along with the role of multiphysics simulation in today's engineering environment
  • Discusses the importance of structural optimization techniques in the design and development of electromechanical systems
  • Provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, magnetic components, RF components, actuators, and motors
  • Reviews the governing equations for the simulation of related multiphysics problems
  • Outlines relevant (topology and parametric size) optimization methods for electromechanical systems
  • Describes in detail several multiphysics simulation and optimization example studies in both two and three dimensions, with sample numerical code


Researchers and engineers in industry and academia will find this work to be an invaluable reference on advanced electromechanicalsystem design. The book is also suitable for students at undergraduate and graduate level, and many of the design examples will be of interest to anyone curious about the unique design solutions that arise from the coupling of optimization methods with multiphysics simulation techniques.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Ercan M. Dede is a researcher and manager at the Toyota Research Institute of North America in Ann Arbor, MI, USA. Dr. Jaewook Lee is an Assistant Professor at the School of Aerospace and Mechanical Engineering of Korea Aerospace University, Goyang, South Korea. Dr. Tsuyoshi Nomura is a Senior Researcher at Toyota Central R&D Labs, Nagakute, Japan.