Svetlin Georgiev, Khaled Zennir
Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDEs (eBook, PDF)
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Svetlin Georgiev, Khaled Zennir
Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDEs (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The aim of this book is to present a clear and well-organized treatment of the concept behind the development of mathematics and solution techniques.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 1.87MB
The aim of this book is to present a clear and well-organized treatment of the concept behind the development of mathematics and solution techniques.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 304
- Erscheinungstermin: 9. Juni 2020
- Englisch
- ISBN-13: 9781000078992
- Artikelnr.: 59597026
- Verlag: Taylor & Francis
- Seitenzahl: 304
- Erscheinungstermin: 9. Juni 2020
- Englisch
- ISBN-13: 9781000078992
- Artikelnr.: 59597026
Khaled Zennir was born in Skikda, Algeria 1982. He received his PhD in Mathematics in 2013 from Sidi Bel Abbès University, Algeria (Assist. professor). He obtained his highest diploma in Algeria (Habilitation, Mathematics) from Constantine university, Algeria in May 2015 (Assoc. professor). He is now assistant Professor at Qassim university, KSA. His research interests lie in Nonlinear Hyperbolic Partial Differential Equations: Global Existence, Blow-Up, and Long Time Behavior.
Svetlin G. Georgiev (born 05 April 1974, Rouse, Bulgaria) is a mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, dynamic calculus on time scales. 7.
Svetlin G. Georgiev (born 05 April 1974, Rouse, Bulgaria) is a mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, dynamic calculus on time scales. 7.
1. Fixed Point Index Theory. Multiple Fixed Point Theorems
1.1 Measures of Noncompactness
1.2 The Brower Fixed Point Theorem. The Schauder Fixed Point
Theorem
1.3 Fixed Points of Strict Set Contractions
1.4 The Kronecker Index
1.5 The Brower Degree
1.5.1 Smooth Mappings
1.5.2 Homotopy Invariance
1.5.3 Continuous Mappings. Basic Properties
1.5.4 The Case f : D _ Rn !Sn1
1.6 The Leray-Schauder Degree
1.7 The Fixed Point Index for Completely Continuous Mappings
1.8 The Fixed Point Index for Strict Set Contractions
1.9 Multiple Fixed Point Theorems
2. Applications to ODEs
2.1 Periodic Solutions for First Order ODEs
2.2 BVPs for First Order ODEs
2.3 BVPs for Second Order ODEs
2.4 BVPs with Impulses
3. Applications to FDEs
3.1 Global existence for a class fractional-differential equations
3.2 Multiple Solutions for a BVP of Nonlinear Riemann-Liouville
Fractional Differential Equations .
3.3 Multiple Solutions for a BVP of Nonlinear Caputo Fractional
Differential Equations
4. Applications to Parabolic Equations
4.1 Differentiability of the Classical Solutions with Respect to the
Initial Conditions of an IVP
4.2 Local Existence of Classical Solutions for an IBVP
4.3 Periodic Solutions
4.4 Multiple Solutions for an IBVP with Robin Boundary Conditions
5. Applications to Hyperbolic Equations
5.1 Differentiability of the Classical Solutions with Respect to the
Initial Conditions for an IVP for a Class Hyperbolic Equations
5.2 Multiple Solutions for an IBVP with Robin Boundary Conditions
5.3 Periodic Solutions
6. Applications to Elliptic Equations
6.1 Multiple Solutions for an BVP with Robin Boundary Conditions
6.2 Existence and Smoothness of Navier-Stokes Equations
References
1.1 Measures of Noncompactness
1.2 The Brower Fixed Point Theorem. The Schauder Fixed Point
Theorem
1.3 Fixed Points of Strict Set Contractions
1.4 The Kronecker Index
1.5 The Brower Degree
1.5.1 Smooth Mappings
1.5.2 Homotopy Invariance
1.5.3 Continuous Mappings. Basic Properties
1.5.4 The Case f : D _ Rn !Sn1
1.6 The Leray-Schauder Degree
1.7 The Fixed Point Index for Completely Continuous Mappings
1.8 The Fixed Point Index for Strict Set Contractions
1.9 Multiple Fixed Point Theorems
2. Applications to ODEs
2.1 Periodic Solutions for First Order ODEs
2.2 BVPs for First Order ODEs
2.3 BVPs for Second Order ODEs
2.4 BVPs with Impulses
3. Applications to FDEs
3.1 Global existence for a class fractional-differential equations
3.2 Multiple Solutions for a BVP of Nonlinear Riemann-Liouville
Fractional Differential Equations .
3.3 Multiple Solutions for a BVP of Nonlinear Caputo Fractional
Differential Equations
4. Applications to Parabolic Equations
4.1 Differentiability of the Classical Solutions with Respect to the
Initial Conditions of an IVP
4.2 Local Existence of Classical Solutions for an IBVP
4.3 Periodic Solutions
4.4 Multiple Solutions for an IBVP with Robin Boundary Conditions
5. Applications to Hyperbolic Equations
5.1 Differentiability of the Classical Solutions with Respect to the
Initial Conditions for an IVP for a Class Hyperbolic Equations
5.2 Multiple Solutions for an IBVP with Robin Boundary Conditions
5.3 Periodic Solutions
6. Applications to Elliptic Equations
6.1 Multiple Solutions for an BVP with Robin Boundary Conditions
6.2 Existence and Smoothness of Navier-Stokes Equations
References
1. Fixed Point Index Theory. Multiple Fixed Point Theorems
1.1 Measures of Noncompactness
1.2 The Brower Fixed Point Theorem. The Schauder Fixed Point
Theorem
1.3 Fixed Points of Strict Set Contractions
1.4 The Kronecker Index
1.5 The Brower Degree
1.5.1 Smooth Mappings
1.5.2 Homotopy Invariance
1.5.3 Continuous Mappings. Basic Properties
1.5.4 The Case f : D _ Rn !Sn1
1.6 The Leray-Schauder Degree
1.7 The Fixed Point Index for Completely Continuous Mappings
1.8 The Fixed Point Index for Strict Set Contractions
1.9 Multiple Fixed Point Theorems
2. Applications to ODEs
2.1 Periodic Solutions for First Order ODEs
2.2 BVPs for First Order ODEs
2.3 BVPs for Second Order ODEs
2.4 BVPs with Impulses
3. Applications to FDEs
3.1 Global existence for a class fractional-differential equations
3.2 Multiple Solutions for a BVP of Nonlinear Riemann-Liouville
Fractional Differential Equations .
3.3 Multiple Solutions for a BVP of Nonlinear Caputo Fractional
Differential Equations
4. Applications to Parabolic Equations
4.1 Differentiability of the Classical Solutions with Respect to the
Initial Conditions of an IVP
4.2 Local Existence of Classical Solutions for an IBVP
4.3 Periodic Solutions
4.4 Multiple Solutions for an IBVP with Robin Boundary Conditions
5. Applications to Hyperbolic Equations
5.1 Differentiability of the Classical Solutions with Respect to the
Initial Conditions for an IVP for a Class Hyperbolic Equations
5.2 Multiple Solutions for an IBVP with Robin Boundary Conditions
5.3 Periodic Solutions
6. Applications to Elliptic Equations
6.1 Multiple Solutions for an BVP with Robin Boundary Conditions
6.2 Existence and Smoothness of Navier-Stokes Equations
References
1.1 Measures of Noncompactness
1.2 The Brower Fixed Point Theorem. The Schauder Fixed Point
Theorem
1.3 Fixed Points of Strict Set Contractions
1.4 The Kronecker Index
1.5 The Brower Degree
1.5.1 Smooth Mappings
1.5.2 Homotopy Invariance
1.5.3 Continuous Mappings. Basic Properties
1.5.4 The Case f : D _ Rn !Sn1
1.6 The Leray-Schauder Degree
1.7 The Fixed Point Index for Completely Continuous Mappings
1.8 The Fixed Point Index for Strict Set Contractions
1.9 Multiple Fixed Point Theorems
2. Applications to ODEs
2.1 Periodic Solutions for First Order ODEs
2.2 BVPs for First Order ODEs
2.3 BVPs for Second Order ODEs
2.4 BVPs with Impulses
3. Applications to FDEs
3.1 Global existence for a class fractional-differential equations
3.2 Multiple Solutions for a BVP of Nonlinear Riemann-Liouville
Fractional Differential Equations .
3.3 Multiple Solutions for a BVP of Nonlinear Caputo Fractional
Differential Equations
4. Applications to Parabolic Equations
4.1 Differentiability of the Classical Solutions with Respect to the
Initial Conditions of an IVP
4.2 Local Existence of Classical Solutions for an IBVP
4.3 Periodic Solutions
4.4 Multiple Solutions for an IBVP with Robin Boundary Conditions
5. Applications to Hyperbolic Equations
5.1 Differentiability of the Classical Solutions with Respect to the
Initial Conditions for an IVP for a Class Hyperbolic Equations
5.2 Multiple Solutions for an IBVP with Robin Boundary Conditions
5.3 Periodic Solutions
6. Applications to Elliptic Equations
6.1 Multiple Solutions for an BVP with Robin Boundary Conditions
6.2 Existence and Smoothness of Navier-Stokes Equations
References