Yulei He, Guangyu Zhang, Chiu-Hsieh Hsu
Multiple Imputation of Missing Data in Practice (eBook, PDF)
Basic Theory and Analysis Strategies
56,95 €
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
56,95 €
Als Download kaufen
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
28 °P sammeln
Yulei He, Guangyu Zhang, Chiu-Hsieh Hsu
Multiple Imputation of Missing Data in Practice (eBook, PDF)
Basic Theory and Analysis Strategies
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 22.61MB
Andere Kunden interessierten sich auch für
- Yulei HeMultiple Imputation of Missing Data in Practice (eBook, ePUB)56,95 €
- Yan LuR Companion for Sampling (eBook, PDF)30,95 €
- Holmes FinchMultilevel Modeling Using Mplus (eBook, PDF)56,95 €
- Michael J. DanielsBayesian Nonparametrics for Causal Inference and Missing Data (eBook, PDF)52,95 €
- Holmes FinchApplied Regularization Methods for the Social Sciences (eBook, PDF)47,95 €
- Yihui XieR Markdown (eBook, PDF)34,95 €
- Bryan F. J. ManlyMultivariate Statistical Methods (eBook, PDF)52,95 €
-
-
-
Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 494
- Erscheinungstermin: 19. November 2021
- Englisch
- ISBN-13: 9781498722070
- Artikelnr.: 62613516
- Verlag: Taylor & Francis
- Seitenzahl: 494
- Erscheinungstermin: 19. November 2021
- Englisch
- ISBN-13: 9781498722070
- Artikelnr.: 62613516
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Yulei He and Guangyu Zhang are mathematical statisticians at the National Center for Health Statistics, the U.S. Centers for Disease Control and Prevention. Chiu-Heish Hsu is a Professor of Biostatistics at the University of Arizona. All authors have researched, taught, and consulted in multiple imputation and missing data analysis in the past 20 years.
1. Introduction. 2. Statistical Background. 3. Multiple Imputation Analysis: Basics. 4. Multiple Imputation for Univariate Missing Data: Parametric Methods. 5. Multiple Imputation for Univariate Missing Data: Robust Methods. 6. Multiple Imputation for Multivariate Missing Data: the Joint Modeling Approach. 7. Multiple Imputation for Multivariate Missing Data: the Fully Conditional Specification Approach. 8. Multiple Imputation in Survival Data Analysis. 9. Multiple Imputation for Longitudinal Data. 10. Multiple Imputation Analysis for Complex Survey Data. 11. Multiple Imputation for Data Subject to Measurement Error. 12. Multiple Imputation Diagnostics.
1. Introduction. 2. Statistical Background. 3. Multiple Imputation
Analysis: Basics. 4. Multiple Imputation for Univariate Missing Data:
Parametric Methods. 5. Multiple Imputation for Univariate Missing Data:
Robust Methods. 6. Multiple Imputation for Multivariate Missing Data: the
Joint Modeling Approach. 7. Multiple Imputation for Multivariate Missing
Data: the Fully Conditional Specification Approach. 8. Multiple Imputation
in Survival Data Analysis. 9. Multiple Imputation for Longitudinal Data.
10. Multiple Imputation Analysis for Complex Survey Data. 11. Multiple
Imputation for Data Subject to Measurement Error. 12. Multiple Imputation
Diagnostics.
Analysis: Basics. 4. Multiple Imputation for Univariate Missing Data:
Parametric Methods. 5. Multiple Imputation for Univariate Missing Data:
Robust Methods. 6. Multiple Imputation for Multivariate Missing Data: the
Joint Modeling Approach. 7. Multiple Imputation for Multivariate Missing
Data: the Fully Conditional Specification Approach. 8. Multiple Imputation
in Survival Data Analysis. 9. Multiple Imputation for Longitudinal Data.
10. Multiple Imputation Analysis for Complex Survey Data. 11. Multiple
Imputation for Data Subject to Measurement Error. 12. Multiple Imputation
Diagnostics.
1. Introduction. 2. Statistical Background. 3. Multiple Imputation Analysis: Basics. 4. Multiple Imputation for Univariate Missing Data: Parametric Methods. 5. Multiple Imputation for Univariate Missing Data: Robust Methods. 6. Multiple Imputation for Multivariate Missing Data: the Joint Modeling Approach. 7. Multiple Imputation for Multivariate Missing Data: the Fully Conditional Specification Approach. 8. Multiple Imputation in Survival Data Analysis. 9. Multiple Imputation for Longitudinal Data. 10. Multiple Imputation Analysis for Complex Survey Data. 11. Multiple Imputation for Data Subject to Measurement Error. 12. Multiple Imputation Diagnostics.
1. Introduction. 2. Statistical Background. 3. Multiple Imputation
Analysis: Basics. 4. Multiple Imputation for Univariate Missing Data:
Parametric Methods. 5. Multiple Imputation for Univariate Missing Data:
Robust Methods. 6. Multiple Imputation for Multivariate Missing Data: the
Joint Modeling Approach. 7. Multiple Imputation for Multivariate Missing
Data: the Fully Conditional Specification Approach. 8. Multiple Imputation
in Survival Data Analysis. 9. Multiple Imputation for Longitudinal Data.
10. Multiple Imputation Analysis for Complex Survey Data. 11. Multiple
Imputation for Data Subject to Measurement Error. 12. Multiple Imputation
Diagnostics.
Analysis: Basics. 4. Multiple Imputation for Univariate Missing Data:
Parametric Methods. 5. Multiple Imputation for Univariate Missing Data:
Robust Methods. 6. Multiple Imputation for Multivariate Missing Data: the
Joint Modeling Approach. 7. Multiple Imputation for Multivariate Missing
Data: the Fully Conditional Specification Approach. 8. Multiple Imputation
in Survival Data Analysis. 9. Multiple Imputation for Longitudinal Data.
10. Multiple Imputation Analysis for Complex Survey Data. 11. Multiple
Imputation for Data Subject to Measurement Error. 12. Multiple Imputation
Diagnostics.