Multiscale Geomechanics (eBook, PDF)
From Soil to Engineering Projects
Redaktion: Hicher, Pierre-Yves
Alle Infos zum eBook verschenken
Multiscale Geomechanics (eBook, PDF)
From Soil to Engineering Projects
Redaktion: Hicher, Pierre-Yves
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book addresses the latest issues in multiscale geomechanics. Written by leading experts in the field as a tribute to Jean Biarez (1927-2006), it can be of great use and interest to researchers and engineers alike. A brief introduction describes how a major school of soil mechanics came into being through the exemplary teaching by one man. Biarez's life-long work consisted of explaining the elementary mechanisms governing soil constituents in order to enhance understanding of the underlying scientific laws which control the behavior of constructible sites and to incorporate these…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 21.81MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 396
- Erscheinungstermin: 28. Februar 2013
- Englisch
- ISBN-13: 9781118601389
- Artikelnr.: 38401409
- Verlag: John Wiley & Sons
- Seitenzahl: 396
- Erscheinungstermin: 28. Februar 2013
- Englisch
- ISBN-13: 9781118601389
- Artikelnr.: 38401409
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1) plane and pore pressure variation 133 5.7.3. Initial stress p'0 normalization in the (q - p) plane 133 5.8. The triaxial behavior of "lumpy" sands 134 5.8.1. "Lump" sands 134 5.8.2. The Roscoe model applied to lump sands 135 5.8.3. Synthesis of several lump sand behaviors 136 5.9. A new model to analyze the oedometer's path 138 5.9.1. Burland's model 138 5.9.2. Comparison of models and mixed model 141 5.9.3. Burland's model in (IL - log
'v) Biarez's space 144 5.10. "Destructuration" of clayey sediments 144 5.11. Conclusion 145 5.12. Examples of manuscript notes 147 5.13. Bibliography 149 Chapter 6. The Concept of Effective Stress in Unsaturated Soils 153 Said TAIBI, Jean-Marie FLEUREAU, Sigit HADIWARDOYO, Hanène SOULI and António GOMES CORREIA 6.1. Introduction 153 6.2. Microstructural model for unsaturated porous media 160 6.3. Material and methods 164 6.3.1. Material and preparation of samples 164 6.3.2. Experimental devices and test procedures 165 6.3.3. Normalization of data 170 6.4. Experimental results 171 6.4.1. Isotropic compression paths 171 6.4.2. Deviatoric compression paths 72 6.4.3. Small strain behavior 173 6.5. Interpretation of results using the effective stress concept 174 6.5.1. Interpretation of large strain triaxial tests 175 6.5.2. Interpretation of small strain modulus measurements 176 6.6. Conclusions 177 6.7. Acknowledgements 178 6.8. Bibliography 178 Chapter 7. A Microstructural Model for Soils and Granular Materials 183 Pierre-Yves HICHER 7.1. Introduction 183 7.2. The micro-structural model 185 7.2.1. Inter-particle behavior 186 7.2.2. Stress
strain relationship 189 7.2.3. Model parameters 190 7.3. Results of numerical simulation on Hostun sand 191 7.3.1. Drained triaxial tests 191 7.3.2. Undrained triaxial tests 195 7.4. Model extension to clayey materials 196 7.4.1. Remolded clays 198 7.4.2. Natural clays 200 7.5. Unsaturated granular materials 204 7.6. Summary and conclusion 214 7.7. Bibliography 216 Chapter 8. Modeling Landslides with a Material Instability Criterion 221 Florent PRUNIER, Sylvain LIGNON, Farid LAOUAFA and Félix DARVE 8.1. Introduction 221 8.2. Study of the second-order work criterion 223 8.2.1. Analytical study 223 8.2.2. Physical interpretation 227 8.3. Petacciato landslide modeling 229 8.3.1. Site presentation 229 8.3.2. Description of the model used 231 8.3.3. Landslide computation 234 8.4. Conclusion 238 8.5. Bibliography 240 Chapter 9. Numerical Modeling: An Efficient Tool for Analyzing the Behavior of Constructions 243 Arezou MODARESSI-FARAHMAND-RAZAVI 9.1. Notations 243 9.2. Introduction 247 9.3. Modeling soil behavior 248 9.3.1. Main characteristics of the soil's mechanical behavior 248 9.3.2. Constitutive models used for computation 253 9.3.3. Simplified model 254 9.3.4. Generalizing the simplified model 262 9.3.5. Mechanical behavior of non-saturated soil 265 9.3.6. Loading/unloading definition in plasticity 272 9.3.7. Multimechanism model 274 9.4. Parameter identification strategy for the ECP model 275 9.4.1. Classification and identification of the ECP model parameters 276 9.4.2. Directly measurable parameters 279 9.4.3. Parameters that are not directly measurable 288 9.4.4. Parameters defining the initial state 290 9.4.5. Application of parameter identification strategy 293 9.5. Influence of constitutive behavior on structural response 299 9.5.1. Retaining walls 299 9.5.2. Vertically loaded piles 304 9.5.3. Earth and rockfill dams 312 9.6. Conclusions 318 9.7. Acknowledgments 319 9.8. Appendix 319 9.9. Bibliography 323 Chapter 10. Evaluating Seismic Stability of Embankment Dams 333 Jean-Jacques FRY 10.1. Introduction 333 10.1.1. A tribute to Jean Biarez 333 10.1.2. Definitions 334 10.2. Observed seismic performance 335 10.2.1. Earthquake performance of gravity dams 335 10.2.2. Earthquake performance of buttress dams 336 10.2.3. Earthquake performance of arch dams 337 10.2.4. Earthquake performance of hydraulic fills 338 10.2.5. Earthquake performance of tailing dams 339 10.2.6. Earthquake performance of road embankments and levees 339 10.2.7. Earthquake performance of river hydroelectric embankments 339 10.2.8. Earthquake performance of small earth dams 340 10.2.9. Earthquake performance of large earth dams 342 10.2.10. Earthquake performance of large zoned dams with rockfill 344 10.2.11. Earthquake performance of concrete face rockfill dams 344 10.2.12. Dynamic performance of physical models 345 10.2.13. Assessment of seismic damage on dams 345 10.2.14. Major seismic damage of large concrete dams 346 10.2.15. Seismic damage of large embankment dams 347 10.2.16. Delayed or indirect consequences of an earthquake 347 10.3. Method for analyzing seismic risk 348 10.3.1. Seismic classification of dams in France 348 10.4. Evaluation of seismic hazard 350 10.4.1. Scenarios for dimensioning a particular situation 350 10.4.2. Choice of seismic levels 350 10.4.3. Choice of the seismic characteristics 351 10.4.4. Choice of accelerographs 352 10.5. Re-evaluation of seismic stability 355 10.5.1. Maximum risk associated with seismic loading: liquefaction 355 10.5.2. A recommended step-by-step methodology 357 10.5.3. Identification 357 10.5.4. Pseudo-static analysis of stability 358 10.5.5. Pseudo-static analysis of displacement 358 10.5.6. Analysis of the liquefaction risk 362 10.5.7. Coupled non-linear analysis 365 10.5.8. Analysis of post-seismic stability 367 10.5.9. Assessment 367 10.6. Semi-coupled modeling of liquefaction 368 10.6.1. Objectives 368 10.6.2. Constitutive model 368 10.6.3. Failure criterion 369 10.6.4. Shear strain law 370 10.6.5. Volumetric strain law: liquefaction 372 10.6.6. Model implementation 373 10.6.7. Model qualification in the case of the San Fernando Dam failure 373 10.6.8. Model application to fluvial dikes 380 10.7. Bibliography 387 List of Authors 393 Index 395
1) plane and pore pressure variation 133 5.7.3. Initial stress p'0 normalization in the (q - p) plane 133 5.8. The triaxial behavior of "lumpy" sands 134 5.8.1. "Lump" sands 134 5.8.2. The Roscoe model applied to lump sands 135 5.8.3. Synthesis of several lump sand behaviors 136 5.9. A new model to analyze the oedometer's path 138 5.9.1. Burland's model 138 5.9.2. Comparison of models and mixed model 141 5.9.3. Burland's model in (IL - log
'v) Biarez's space 144 5.10. "Destructuration" of clayey sediments 144 5.11. Conclusion 145 5.12. Examples of manuscript notes 147 5.13. Bibliography 149 Chapter 6. The Concept of Effective Stress in Unsaturated Soils 153 Said TAIBI, Jean-Marie FLEUREAU, Sigit HADIWARDOYO, Hanène SOULI and António GOMES CORREIA 6.1. Introduction 153 6.2. Microstructural model for unsaturated porous media 160 6.3. Material and methods 164 6.3.1. Material and preparation of samples 164 6.3.2. Experimental devices and test procedures 165 6.3.3. Normalization of data 170 6.4. Experimental results 171 6.4.1. Isotropic compression paths 171 6.4.2. Deviatoric compression paths 72 6.4.3. Small strain behavior 173 6.5. Interpretation of results using the effective stress concept 174 6.5.1. Interpretation of large strain triaxial tests 175 6.5.2. Interpretation of small strain modulus measurements 176 6.6. Conclusions 177 6.7. Acknowledgements 178 6.8. Bibliography 178 Chapter 7. A Microstructural Model for Soils and Granular Materials 183 Pierre-Yves HICHER 7.1. Introduction 183 7.2. The micro-structural model 185 7.2.1. Inter-particle behavior 186 7.2.2. Stress
strain relationship 189 7.2.3. Model parameters 190 7.3. Results of numerical simulation on Hostun sand 191 7.3.1. Drained triaxial tests 191 7.3.2. Undrained triaxial tests 195 7.4. Model extension to clayey materials 196 7.4.1. Remolded clays 198 7.4.2. Natural clays 200 7.5. Unsaturated granular materials 204 7.6. Summary and conclusion 214 7.7. Bibliography 216 Chapter 8. Modeling Landslides with a Material Instability Criterion 221 Florent PRUNIER, Sylvain LIGNON, Farid LAOUAFA and Félix DARVE 8.1. Introduction 221 8.2. Study of the second-order work criterion 223 8.2.1. Analytical study 223 8.2.2. Physical interpretation 227 8.3. Petacciato landslide modeling 229 8.3.1. Site presentation 229 8.3.2. Description of the model used 231 8.3.3. Landslide computation 234 8.4. Conclusion 238 8.5. Bibliography 240 Chapter 9. Numerical Modeling: An Efficient Tool for Analyzing the Behavior of Constructions 243 Arezou MODARESSI-FARAHMAND-RAZAVI 9.1. Notations 243 9.2. Introduction 247 9.3. Modeling soil behavior 248 9.3.1. Main characteristics of the soil's mechanical behavior 248 9.3.2. Constitutive models used for computation 253 9.3.3. Simplified model 254 9.3.4. Generalizing the simplified model 262 9.3.5. Mechanical behavior of non-saturated soil 265 9.3.6. Loading/unloading definition in plasticity 272 9.3.7. Multimechanism model 274 9.4. Parameter identification strategy for the ECP model 275 9.4.1. Classification and identification of the ECP model parameters 276 9.4.2. Directly measurable parameters 279 9.4.3. Parameters that are not directly measurable 288 9.4.4. Parameters defining the initial state 290 9.4.5. Application of parameter identification strategy 293 9.5. Influence of constitutive behavior on structural response 299 9.5.1. Retaining walls 299 9.5.2. Vertically loaded piles 304 9.5.3. Earth and rockfill dams 312 9.6. Conclusions 318 9.7. Acknowledgments 319 9.8. Appendix 319 9.9. Bibliography 323 Chapter 10. Evaluating Seismic Stability of Embankment Dams 333 Jean-Jacques FRY 10.1. Introduction 333 10.1.1. A tribute to Jean Biarez 333 10.1.2. Definitions 334 10.2. Observed seismic performance 335 10.2.1. Earthquake performance of gravity dams 335 10.2.2. Earthquake performance of buttress dams 336 10.2.3. Earthquake performance of arch dams 337 10.2.4. Earthquake performance of hydraulic fills 338 10.2.5. Earthquake performance of tailing dams 339 10.2.6. Earthquake performance of road embankments and levees 339 10.2.7. Earthquake performance of river hydroelectric embankments 339 10.2.8. Earthquake performance of small earth dams 340 10.2.9. Earthquake performance of large earth dams 342 10.2.10. Earthquake performance of large zoned dams with rockfill 344 10.2.11. Earthquake performance of concrete face rockfill dams 344 10.2.12. Dynamic performance of physical models 345 10.2.13. Assessment of seismic damage on dams 345 10.2.14. Major seismic damage of large concrete dams 346 10.2.15. Seismic damage of large embankment dams 347 10.2.16. Delayed or indirect consequences of an earthquake 347 10.3. Method for analyzing seismic risk 348 10.3.1. Seismic classification of dams in France 348 10.4. Evaluation of seismic hazard 350 10.4.1. Scenarios for dimensioning a particular situation 350 10.4.2. Choice of seismic levels 350 10.4.3. Choice of the seismic characteristics 351 10.4.4. Choice of accelerographs 352 10.5. Re-evaluation of seismic stability 355 10.5.1. Maximum risk associated with seismic loading: liquefaction 355 10.5.2. A recommended step-by-step methodology 357 10.5.3. Identification 357 10.5.4. Pseudo-static analysis of stability 358 10.5.5. Pseudo-static analysis of displacement 358 10.5.6. Analysis of the liquefaction risk 362 10.5.7. Coupled non-linear analysis 365 10.5.8. Analysis of post-seismic stability 367 10.5.9. Assessment 367 10.6. Semi-coupled modeling of liquefaction 368 10.6.1. Objectives 368 10.6.2. Constitutive model 368 10.6.3. Failure criterion 369 10.6.4. Shear strain law 370 10.6.5. Volumetric strain law: liquefaction 372 10.6.6. Model implementation 373 10.6.7. Model qualification in the case of the San Fernando Dam failure 373 10.6.8. Model application to fluvial dikes 380 10.7. Bibliography 387 List of Authors 393 Index 395