109,95 €
109,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
55 °P sammeln
109,95 €
109,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
55 °P sammeln
Als Download kaufen
109,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
55 °P sammeln
Jetzt verschenken
109,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
55 °P sammeln
  • Format: ePub

Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process provides comprehensive coverage on the latest methodology in additive manufacturing (AM) modeling and simulation. Although there are extensive advances within the AM field, challenges to predictive theoretical and computational approaches still hinder the widespread adoption of AM. The book reviews metal additive materials and processes and discusses multiscale/multiphysics modeling strategies. In addition, coverage of modeling and simulation of AM process in order to understand the…mehr

Produktbeschreibung
Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process provides comprehensive coverage on the latest methodology in additive manufacturing (AM) modeling and simulation. Although there are extensive advances within the AM field, challenges to predictive theoretical and computational approaches still hinder the widespread adoption of AM. The book reviews metal additive materials and processes and discusses multiscale/multiphysics modeling strategies. In addition, coverage of modeling and simulation of AM process in order to understand the process-structure-property relationship is reviewed, along with the modeling of morphology evolution, phase transformation, and defect formation in AM parts.

Residual stress, distortion, plasticity/damage in AM parts are also considered, with scales associated with the spatial, temporal and/or material domains reviewed. This book is useful for graduate students, engineers and professionals working on AM materials, equipment, process, development and modeling.

  • Includes the fundamental principles of additive manufacturing modeling techniques
  • Presents various modeling tools/software for AM modeling
  • Discusses various design methods and how to optimize the AM process using these models

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Yi Zhang, Ph.D. is an Applications Engineer with Ansys, Inc. He received his Ph.D. degree in Mechanical Engineering from Purdue University in 2018, mentored by Dr. Jing Zhang.Dr. Yeon-Gil Jung is a professor of Materials Science and Engineering at Changwon National University, Republic of Korea. He received his B.S, M.S, and Ph.D. degrees from Hanyang University, Republic of Korea. After that, he studied material property evaluation using Hertzian Indentation at NIST (National Institute Standard and Technology) with Dr. Brian Lawn during 1997-1999. He joined Changwon National University in 1999. He has been a visiting scholar and research professor 2013 - 2017 at Indiana University - Purdue University Indianapolis.Jing Zhang is an associate professor of Mechanical and Energy Engineering at Indiana University - Purdue University Indianapolis, USA. He received his Ph.D. degree in Materials Science from Drexel University in 2004. In the Standardization Roadmap for Additive Manufacturing (Version 2.0) published by the America Makes and the American National Standards Institute (ANSI), he served as the co-chair of Post-Processing Working Group.