73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book has many applications to stochastic comparison problems in economics and other fields. It covers theory of lift zonoids and demonstrates its usefulness in multivariate analysis, an informal introduction to basic ideas, and a comprehensive investigation into the theory, as well as various applications of the lift zonoid approach and may be separately studied.
Readers are assumed to have a firm grounding in probability at the graduate level.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 21.91MB
Andere Kunden interessierten sich auch für
- Neil H. TimmApplied Multivariate Analysis (eBook, PDF)73,95 €
- Probability Measure on Groups VII (eBook, PDF)35,95 €
- René L. SchillingBernstein Functions (eBook, PDF)132,95 €
- Analyzing and Modeling Data and Knowledge (eBook, PDF)73,95 €
- D. DennebergNon-Additive Measure and Integral (eBook, PDF)193,95 €
- Victor ChulaevskyMulti-scale Analysis for Random Quantum Systems with Interaction (eBook, PDF)53,95 €
- Alexandre J. ChorinVorticity and Turbulence (eBook, PDF)40,95 €
-
-
-
This book has many applications to stochastic comparison problems in economics and other fields. It covers theory of lift zonoids and demonstrates its usefulness in multivariate analysis, an informal introduction to basic ideas, and a comprehensive investigation into the theory, as well as various applications of the lift zonoid approach and may be separately studied.
Readers are assumed to have a firm grounding in probability at the graduate level.
Readers are assumed to have a firm grounding in probability at the graduate level.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 292
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461300458
- Artikelnr.: 43992079
- Verlag: Springer US
- Seitenzahl: 292
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461300458
- Artikelnr.: 43992079
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Karl Mosler, Universität zu Köln, Germany
Preface.- 1 Introduction.- 1.4 Examples of lift zonoids.- 1.5 Representing distributions by convex compacts.- 1.6 Ordering distributions.- 1.7 Central regions and data depth.- 1.8 Statistical inference.- 2 Zonoids and lift zonoids.- 2.1 Zonotopes and zonoids.- 2.2 Lift zonoid of a measure.- 2.3 Embedding into convex compacts.- 2.4 Continuity and approximation.- 2.5 Limit theorems.- 2.6 Representation of measures by a functional.- 2.7 Notes.- 3 Central regions.- 3.1 Zonoid trimmed regions.- 3.2 Properties.- 3.3 Univariate central regions.- 3.4 Examples of zonoid trimmed regions.- 3.5 Notions of central regions.- 3.6 Continuity and law of large numbers.- 3.7 Further properties.- 3.8 Trimming of empirical measures.- 3.9 Computation of zonoid trimmed regions.- 3.10 Notes.- 4 Data depth.- 4.1 Zonoid depth.- 4.2 Properties of the zonoid depth.- 4.3 Different notions of data depth.- 4.4 Combination invariance.- 4.5 Computation of the zonoid depth.- 4.6 Notes.- 5 Inference based on data depth (by Rainer Dyckerhoff).- 5.1 General notion of data depth.- 5.2 Two-sample depth test for scale.- 5.3 Two-sample rank test for location and scale.- 5.4 Classical two-sample tests.- 5.5 A new Wilcoxon distance test.- 5.6 Power comparison.- 5.7 Notes.- 6 Depth of hyperlanes.- 6.1 Depth of a hyperlane and MHD of a sample.- 6.2 Properties of MHD and majority depth.- 6.3 Combinatorial invariance.- 6.4 measuring combinatorial dispersion.- 6.5 MHD statistics.- 6.6 Significance tests and their power.- 6.7 Notes.- 7 Depth of hyperlanes.- 6.1 Depth of a hyperplane and MHD of a sample.- 6.2 Properties of MHD and majority depth.- 6.3 Combinatorial invariance.- 6.4 Measuring combinatorial dispersion.- 6.5 MHD statistics.- 6.6 Significance tests and their power.- 6.7 Notes.- 8 Orderings and indices of dispersion.- 8.1 Lift zonoid order.- 8.2 order of marginals and independence.- 8.3 Order of convolutions.- 8.4 Lift zonoid order vs. convex order.- 8.5 Volume inequalities and random determinants.- 8.6 Increasing, scaled, and centered orders.- 8.7 Properties of dispersion orders.- 8.8 Multivariate indices of dispersion.- 8.9 Notes.- 9 Economic disparity and concentration.- 9.1 Measuring economic inequality.- 9.2 Inverse Lorenz function (ILF).- 9.3 Price Lorenz order.- 9.4 Majorizations of absolute endowments.- 9.5 Other inequality orderings.- 9.6 Measuring industrial concentration.- 9.7 Multivariate concentration function.- 9.8 Multivariate concentration indices.- 9.9 Notes.- Appendix A: Basic notions.- Appendix B: Lift zonoids of bivariate normals.
Preface.- 1 Introduction.- 1.4 Examples of lift zonoids.- 1.5 Representing distributions by convex compacts.- 1.6 Ordering distributions.- 1.7 Central regions and data depth.- 1.8 Statistical inference.- 2 Zonoids and lift zonoids.- 2.1 Zonotopes and zonoids.- 2.2 Lift zonoid of a measure.- 2.3 Embedding into convex compacts.- 2.4 Continuity and approximation.- 2.5 Limit theorems.- 2.6 Representation of measures by a functional.- 2.7 Notes.- 3 Central regions.- 3.1 Zonoid trimmed regions.- 3.2 Properties.- 3.3 Univariate central regions.- 3.4 Examples of zonoid trimmed regions.- 3.5 Notions of central regions.- 3.6 Continuity and law of large numbers.- 3.7 Further properties.- 3.8 Trimming of empirical measures.- 3.9 Computation of zonoid trimmed regions.- 3.10 Notes.- 4 Data depth.- 4.1 Zonoid depth.- 4.2 Properties of the zonoid depth.- 4.3 Different notions of data depth.- 4.4 Combination invariance.- 4.5 Computation of the zonoid depth.- 4.6 Notes.- 5 Inference based on data depth (by Rainer Dyckerhoff).- 5.1 General notion of data depth.- 5.2 Two-sample depth test for scale.- 5.3 Two-sample rank test for location and scale.- 5.4 Classical two-sample tests.- 5.5 A new Wilcoxon distance test.- 5.6 Power comparison.- 5.7 Notes.- 6 Depth of hyperlanes.- 6.1 Depth of a hyperlane and MHD of a sample.- 6.2 Properties of MHD and majority depth.- 6.3 Combinatorial invariance.- 6.4 measuring combinatorial dispersion.- 6.5 MHD statistics.- 6.6 Significance tests and their power.- 6.7 Notes.- 7 Depth of hyperlanes.- 6.1 Depth of a hyperplane and MHD of a sample.- 6.2 Properties of MHD and majority depth.- 6.3 Combinatorial invariance.- 6.4 Measuring combinatorial dispersion.- 6.5 MHD statistics.- 6.6 Significance tests and their power.- 6.7 Notes.- 8 Orderings and indices of dispersion.- 8.1 Lift zonoid order.- 8.2 order of marginals and independence.- 8.3 Order of convolutions.- 8.4 Lift zonoid order vs. convex order.- 8.5 Volume inequalities and random determinants.- 8.6 Increasing, scaled, and centered orders.- 8.7 Properties of dispersion orders.- 8.8 Multivariate indices of dispersion.- 8.9 Notes.- 9 Economic disparity and concentration.- 9.1 Measuring economic inequality.- 9.2 Inverse Lorenz function (ILF).- 9.3 Price Lorenz order.- 9.4 Majorizations of absolute endowments.- 9.5 Other inequality orderings.- 9.6 Measuring industrial concentration.- 9.7 Multivariate concentration function.- 9.8 Multivariate concentration indices.- 9.9 Notes.- Appendix A: Basic notions.- Appendix B: Lift zonoids of bivariate normals.