73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Multivariate Statistical Analysis
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 19.53MB
Andere Kunden interessierten sich auch für
- Survival Analysis: State of the Art (eBook, PDF)73,95 €
- Odd AalenSurvival and Event History Analysis (eBook, PDF)137,95 €
- Frontiers in Statistical Quality Control 13 (eBook, PDF)161,95 €
- Frontiers in Statistical Quality Control 12 (eBook, PDF)161,95 €
- A. A. IvanovStatistical Analysis of Random Fields (eBook, PDF)40,95 €
- Yanhong WuInference for Change Point and Post Change Means After a CUSUM Test (eBook, PDF)40,95 €
- Chin Diew LaiStochastic Ageing and Dependence for Reliability (eBook, PDF)73,95 €
-
-
-
Multivariate Statistical Analysis
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Netherlands
- Seitenzahl: 244
- Erscheinungstermin: 9. März 2013
- Englisch
- ISBN-13: 9789401594684
- Artikelnr.: 44063342
- Verlag: Springer Netherlands
- Seitenzahl: 244
- Erscheinungstermin: 9. März 2013
- Englisch
- ISBN-13: 9789401594684
- Artikelnr.: 44063342
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Kolmogorov Asymptotics in Problems of Multivariate Analysis.- Spectral Theory of Large Covariance Matrices.- Approximately Unimprovable Essentially Multivariate Procedures.- 1. Spectral Properties of Large Wishart Matrices.- Wishart Distribution.- Limit Moments of Wishart Matrices.- Limit Formula for the Resolvent of Wishart Matrices.- 2. Resolvents and Spectral Functions of Large Sample Covariance Matrices.- Spectral Functions of Random Gram Matrices.- Spectral Functions of Sample Covariance Matrices.- Limit Spectral Functions of the Increasing Sample Covariance Matrices.- 3. Resolvents and Spectral Functions of Large Pooled Sample Covariance Matrices.- Problem Setting.- Spectral Functions of Pooled Random Gram Matrices.- Spectral Functions of Pooled Sample Covariance Matrices.- Limit Spectral Functions of the Increasing Pooled Sample Covariance Matrices.- 4. Normal Evaluation of Quality Functions.- Measure of Normalizability.- Spectral Functions of Large Covariance Matrices.- Normal Evaluation of Sample Dependent Functionals.- Discussion.- 5. Estimation of High-Dimensional Inverse Covariance Matrices.- Shrinkage Estimators of the Inverse Covariance Matrices.- Generalized Ridge Estimators of the Inverse Covariance Matrices.- Asymptotically Unimprovable Estimators of the Inverse Covariance Matrices.- 6. Epsilon-Dominating Component-Wise Shrinkage Estimators of Normal Mean.- Estimation Function for the Component-Wise Estimators.- Estimators of the Unimprovable Estimation Function.- 7. Improved Estimators of High-Dimensional Expectation Vectors.- Limit Quadratic Risk for a Class of Estimators of Expectation Vectors.- Minimization of the Limit Quadratic Risk.- Statistics to Approximate the Limit Risk Function.- Statistics to Approximate the Extremal limit Solution.- 8. Quadratic Risk of Linear Regression with a Large Number of Random Predictors.- Spectral Functions of Sample Covariance Matrices.- Functionals Depending on the Statistics Sand ?0.- Functionals Depending on Sample Covariance Matrices and Covariance Vectors.- The Leading Part of the Quadratic Risk and its Estimator.- Special Cases.- 9. Linear Discriminant Analysis of Normal Populations with Coinciding Covariance Matrices.- Problem Setting.- Expectation and Variance of Generalized Discriminant Functions.- Limit Probabilities of the Discrimination Errors.- 10. Population Free Quality of Discrimination.- Problem Setting.- Leading Parts of Functionals for Normal Populations.- Leading Parts of Functionals for Arbitrary Populations.- Discussion.- Proofs.- 11. Theory of Discriminant Analysis of the Increasing Number of Independent Variables.- Problem Setting.- A Priori Weighting of Independent Variables.- Minimization of the Limit Error Probability for a Priori Weighting.- Weighting of Independent Variables by Estimators.- Minimization of the Limit Error Probability for Weighting by Estimators.- Statistics to Estimate Probabilities of Errors.- Contribution of Variables to Discrimination.- Selection of a Large Number of Independent Variables.- Conclusions.- References.
Kolmogorov Asymptotics in Problems of Multivariate Analysis.- Spectral Theory of Large Covariance Matrices.- Approximately Unimprovable Essentially Multivariate Procedures.- 1. Spectral Properties of Large Wishart Matrices.- Wishart Distribution.- Limit Moments of Wishart Matrices.- Limit Formula for the Resolvent of Wishart Matrices.- 2. Resolvents and Spectral Functions of Large Sample Covariance Matrices.- Spectral Functions of Random Gram Matrices.- Spectral Functions of Sample Covariance Matrices.- Limit Spectral Functions of the Increasing Sample Covariance Matrices.- 3. Resolvents and Spectral Functions of Large Pooled Sample Covariance Matrices.- Problem Setting.- Spectral Functions of Pooled Random Gram Matrices.- Spectral Functions of Pooled Sample Covariance Matrices.- Limit Spectral Functions of the Increasing Pooled Sample Covariance Matrices.- 4. Normal Evaluation of Quality Functions.- Measure of Normalizability.- Spectral Functions of Large Covariance Matrices.- Normal Evaluation of Sample Dependent Functionals.- Discussion.- 5. Estimation of High-Dimensional Inverse Covariance Matrices.- Shrinkage Estimators of the Inverse Covariance Matrices.- Generalized Ridge Estimators of the Inverse Covariance Matrices.- Asymptotically Unimprovable Estimators of the Inverse Covariance Matrices.- 6. Epsilon-Dominating Component-Wise Shrinkage Estimators of Normal Mean.- Estimation Function for the Component-Wise Estimators.- Estimators of the Unimprovable Estimation Function.- 7. Improved Estimators of High-Dimensional Expectation Vectors.- Limit Quadratic Risk for a Class of Estimators of Expectation Vectors.- Minimization of the Limit Quadratic Risk.- Statistics to Approximate the Limit Risk Function.- Statistics to Approximate the Extremal limit Solution.- 8. Quadratic Risk of Linear Regression with a Large Number of Random Predictors.- Spectral Functions of Sample Covariance Matrices.- Functionals Depending on the Statistics Sand ?0.- Functionals Depending on Sample Covariance Matrices and Covariance Vectors.- The Leading Part of the Quadratic Risk and its Estimator.- Special Cases.- 9. Linear Discriminant Analysis of Normal Populations with Coinciding Covariance Matrices.- Problem Setting.- Expectation and Variance of Generalized Discriminant Functions.- Limit Probabilities of the Discrimination Errors.- 10. Population Free Quality of Discrimination.- Problem Setting.- Leading Parts of Functionals for Normal Populations.- Leading Parts of Functionals for Arbitrary Populations.- Discussion.- Proofs.- 11. Theory of Discriminant Analysis of the Increasing Number of Independent Variables.- Problem Setting.- A Priori Weighting of Independent Variables.- Minimization of the Limit Error Probability for a Priori Weighting.- Weighting of Independent Variables by Estimators.- Minimization of the Limit Error Probability for Weighting by Estimators.- Statistics to Estimate Probabilities of Errors.- Contribution of Variables to Discrimination.- Selection of a Large Number of Independent Variables.- Conclusions.- References.