Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Research in nano and cell mechanics has received much attention from the scientific community as a result of society needs and government initiatives to accelerate developments in materials, manufacturing, electronics, medicine and healthcare, energy, and the environment. Engineers and scientists are currently engaging in increasingly complex scientific problems that require interdisciplinary approaches. In this regard, studies in this field draw from fundamentals in atomistic scale phenomena, biology, statistical and continuum mechanics, and multiscale modeling and experimentation. As a…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 12.21MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 520
- Erscheinungstermin: 11. Dezember 2012
- Englisch
- ISBN-13: 9781118482605
- Artikelnr.: 37345788
- Verlag: John Wiley & Sons
- Seitenzahl: 520
- Erscheinungstermin: 11. Dezember 2012
- Englisch
- ISBN-13: 9781118482605
- Artikelnr.: 37345788
PP) 297 11.3 Applications to Cell Mechanics 298 11.3.1 Micropatterned Substrates 298 11.3.2 Micropillared Substrates 301 11.3.3 Microfluidic Devices 304 11.4 Conclusions 307 References 307 Part Four MODELING 12 Atomistic Reaction Pathway Sampling: The Nudged Elastic BandMethod and Nanomechanics Applications 313 Ting Zhu, Ju Li, and Sidney Yip 12.1 Introduction 313 12.1.1 Reaction Pathway Sampling in Nanomechanics 314 12.1.2 Extending the Time Scale in Atomistic Simulation 314 12.1.3 Transition-State Theory 315 12.2 The NEB Method for Stress-Driven Problems 315 12.2.1 The NEB method 315 12.2.2 The Free-End NEB Method 317 12.2.3 Stress-Dependent Activation Energy and Activation Volume 320 12.2.4 Activation Entropy and Meyer-Neldel Compensation Rule 322 12.3 Nanomechanics Case Studies 324 12.3.1 Crack Tip Dislocation Emission 324 12.3.2 Stress-Mediated Chemical Reactions 326 12.3.3 Bridging Modeling with Experiment 327 12.3.4 Temperature and Strain-Rate Dependence of Dislocation Nucleation 329 12.3.5 Size and Loading Effects on Fracture 330 12.4 A Perspective on Microstructure Evolution at Long Times 332 12.4.1 Sampling TSP Trajectories 333 12.4.2 Nanomechanics in Problems of Materials Ageing 334 References 336 13 Mechanics of Curvilinear Electronics 339 Shuodao Wang, Jianliang Xiao, Jizhou Song, Yonggang Huang, and John A. Rogers 13.1 Introduction 339 13.2 Deformation of Elastomeric Transfer Elements during Wrapping Processes 342 13.2.1 Strain Distribution in Stretched Elastomeric Transfer Elements 342 13.2.2 Deformed Shape of Elastomeric Transfer Elements 344 13.3 Buckling of Interconnect Bridges 347 13.4 Maximum Strain in the Circuit Mesh 351 13.5 Concluding Remarks 355 Acknowledgments 355 References 355 14 Single-Molecule Pulling: Phenomenology and Interpretation 359 Ignacio Franco, Mark A. Ratner, and George C. Schatz 14.1 Introduction 359 14.2 Force-Extension Behavior of Single Molecules 360 14.3 Single-Molecule Thermodynamics 364 14.3.1 Free Energy Profile of the Molecule Plus Cantilever 365 14.3.2 Extracting the Molecular Potential of Mean Force
(
) 366 14.3.3 Estimating Force-Extension Behavior from
(
) 369 14.4 Modeling Single-Molecule Pulling Using Molecular Dynamics 370 14.4.1 Basic Computational Setup 370 14.4.2 Modeling Strategies 371 14.4.3 Examples 373 14.5 Interpretation of Pulling Phenomenology 376 14.5.1 Basic Structure of the Molecular Potential of Mean Force 377 14.5.2 Mechanical Instability 378 14.5.3 Dynamical Bistability 381 14.6 Summary 384 Acknowledgments 385 References 385 15 Modeling and Simulation of Hierarchical Protein Materials 389 Tristan Giesa, Graham Bratzel, and Markus J. Buehler 15.1 Introduction 389 15.2 Computational and Theoretical Tools 391 15.2.1 Molecular Simulation from Chemistry Upwards 391 15.2.2 Mesoscale Methods for Modeling Larger Length and Time Scales 392 15.2.3 Mathematical Approaches to Biomateriomics 394 15.3 Case Studies 400 15.3.1 Atomistic and Mesoscale Protein Folding and Deformation in Spider Silk 400 15.3.2 Coarse-Grained Modeling of Actin Filaments 402 15.3.3 Category Theoretical Abstraction of a Protein Material and Analogy to an Office Network 403 15.4 Discussion and Conclusion 406 Acknowledgments 406 References 406 16 Geometric Models of Protein Secondary-Structure Formation 411 Hendrik Hansen-Goos and Seth Lichter 16.1 Introduction 411 16.2 Hydrophobic Effect 412 16.2.1 Variable Hydrogen-Bond Strength 415 16.3 Prior Numerical and Coarse-Grained Models 415 16.4 Geometry-Based Modeling: The Tube Model 416 16.4.1 Motivation 416 16.4.2 Impenetrable Tube Models 417 16.4.3 Including Finite-Sized Particles Surrounding the Protein 419 16.4.4 Models Using Real Protein Structure 421 16.5 Morphometric Approach to Solvation Effects 422 16.5.1 Hadwiger's Theorem 422 16.5.2 Applications 424 16.6 Discussion, Conclusions, Future Work 429 16.6.1 Results 429 16.6.2 Discussion and Speculations 430 Acknowledgments 433 References 433 17 Multiscale Modeling for the Vascular Transport of Nanoparticles 437 Shaolie S. Hossain, Adrian M. Kopacz, Yongjie Zhang, Sei-Young Lee, Tae-Rin Lee, Mauro Ferrari, Thomas J.R. Hughes, Wing Kam Liu, and Paolo Decuzzi 17.1 Introduction 437 17.2 Modeling the Dynamics of NPs in the Macrocirculation 438 17.2.1 The 3D Reconstruction of the Patient-Specific Vasculature 439 17.2.2 Modeling the Vascular Flow and Wall Adhesion of NPs 440 17.2.3 Modeling NP Transport across the Arterial Wall and Drug Release 440 17.3 Modeling the NP Dynamics in the Microcirculation 448 17.3.1 Semi-analytical Models for the NP Transport 449 17.3.2 An IFEM for NP and Cell Transport 452 17.4 Conclusions 456 Acknowledgments 456 References 457 Index 461
PP) 297 11.3 Applications to Cell Mechanics 298 11.3.1 Micropatterned Substrates 298 11.3.2 Micropillared Substrates 301 11.3.3 Microfluidic Devices 304 11.4 Conclusions 307 References 307 Part Four MODELING 12 Atomistic Reaction Pathway Sampling: The Nudged Elastic BandMethod and Nanomechanics Applications 313 Ting Zhu, Ju Li, and Sidney Yip 12.1 Introduction 313 12.1.1 Reaction Pathway Sampling in Nanomechanics 314 12.1.2 Extending the Time Scale in Atomistic Simulation 314 12.1.3 Transition-State Theory 315 12.2 The NEB Method for Stress-Driven Problems 315 12.2.1 The NEB method 315 12.2.2 The Free-End NEB Method 317 12.2.3 Stress-Dependent Activation Energy and Activation Volume 320 12.2.4 Activation Entropy and Meyer-Neldel Compensation Rule 322 12.3 Nanomechanics Case Studies 324 12.3.1 Crack Tip Dislocation Emission 324 12.3.2 Stress-Mediated Chemical Reactions 326 12.3.3 Bridging Modeling with Experiment 327 12.3.4 Temperature and Strain-Rate Dependence of Dislocation Nucleation 329 12.3.5 Size and Loading Effects on Fracture 330 12.4 A Perspective on Microstructure Evolution at Long Times 332 12.4.1 Sampling TSP Trajectories 333 12.4.2 Nanomechanics in Problems of Materials Ageing 334 References 336 13 Mechanics of Curvilinear Electronics 339 Shuodao Wang, Jianliang Xiao, Jizhou Song, Yonggang Huang, and John A. Rogers 13.1 Introduction 339 13.2 Deformation of Elastomeric Transfer Elements during Wrapping Processes 342 13.2.1 Strain Distribution in Stretched Elastomeric Transfer Elements 342 13.2.2 Deformed Shape of Elastomeric Transfer Elements 344 13.3 Buckling of Interconnect Bridges 347 13.4 Maximum Strain in the Circuit Mesh 351 13.5 Concluding Remarks 355 Acknowledgments 355 References 355 14 Single-Molecule Pulling: Phenomenology and Interpretation 359 Ignacio Franco, Mark A. Ratner, and George C. Schatz 14.1 Introduction 359 14.2 Force-Extension Behavior of Single Molecules 360 14.3 Single-Molecule Thermodynamics 364 14.3.1 Free Energy Profile of the Molecule Plus Cantilever 365 14.3.2 Extracting the Molecular Potential of Mean Force
(
) 366 14.3.3 Estimating Force-Extension Behavior from
(
) 369 14.4 Modeling Single-Molecule Pulling Using Molecular Dynamics 370 14.4.1 Basic Computational Setup 370 14.4.2 Modeling Strategies 371 14.4.3 Examples 373 14.5 Interpretation of Pulling Phenomenology 376 14.5.1 Basic Structure of the Molecular Potential of Mean Force 377 14.5.2 Mechanical Instability 378 14.5.3 Dynamical Bistability 381 14.6 Summary 384 Acknowledgments 385 References 385 15 Modeling and Simulation of Hierarchical Protein Materials 389 Tristan Giesa, Graham Bratzel, and Markus J. Buehler 15.1 Introduction 389 15.2 Computational and Theoretical Tools 391 15.2.1 Molecular Simulation from Chemistry Upwards 391 15.2.2 Mesoscale Methods for Modeling Larger Length and Time Scales 392 15.2.3 Mathematical Approaches to Biomateriomics 394 15.3 Case Studies 400 15.3.1 Atomistic and Mesoscale Protein Folding and Deformation in Spider Silk 400 15.3.2 Coarse-Grained Modeling of Actin Filaments 402 15.3.3 Category Theoretical Abstraction of a Protein Material and Analogy to an Office Network 403 15.4 Discussion and Conclusion 406 Acknowledgments 406 References 406 16 Geometric Models of Protein Secondary-Structure Formation 411 Hendrik Hansen-Goos and Seth Lichter 16.1 Introduction 411 16.2 Hydrophobic Effect 412 16.2.1 Variable Hydrogen-Bond Strength 415 16.3 Prior Numerical and Coarse-Grained Models 415 16.4 Geometry-Based Modeling: The Tube Model 416 16.4.1 Motivation 416 16.4.2 Impenetrable Tube Models 417 16.4.3 Including Finite-Sized Particles Surrounding the Protein 419 16.4.4 Models Using Real Protein Structure 421 16.5 Morphometric Approach to Solvation Effects 422 16.5.1 Hadwiger's Theorem 422 16.5.2 Applications 424 16.6 Discussion, Conclusions, Future Work 429 16.6.1 Results 429 16.6.2 Discussion and Speculations 430 Acknowledgments 433 References 433 17 Multiscale Modeling for the Vascular Transport of Nanoparticles 437 Shaolie S. Hossain, Adrian M. Kopacz, Yongjie Zhang, Sei-Young Lee, Tae-Rin Lee, Mauro Ferrari, Thomas J.R. Hughes, Wing Kam Liu, and Paolo Decuzzi 17.1 Introduction 437 17.2 Modeling the Dynamics of NPs in the Macrocirculation 438 17.2.1 The 3D Reconstruction of the Patient-Specific Vasculature 439 17.2.2 Modeling the Vascular Flow and Wall Adhesion of NPs 440 17.2.3 Modeling NP Transport across the Arterial Wall and Drug Release 440 17.3 Modeling the NP Dynamics in the Microcirculation 448 17.3.1 Semi-analytical Models for the NP Transport 449 17.3.2 An IFEM for NP and Cell Transport 452 17.4 Conclusions 456 Acknowledgments 456 References 457 Index 461