139,99 €
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
139,99 €
Als Download kaufen
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book will present the theoretical and technological elements of nanosystems. Among the different topics discussed, the authors include the electromechanical properties of NEMS, the scaling effects that give these their interesting properties for different applications and the current manufacturing processes. The authors aim to provide useful tools for future readers and will provide an accurate picture of current and future research in the field.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 7.34MB
Andere Kunden interessierten sich auch für
- Liviu NicuMicro-and Nanoelectromechanical Biosensors (eBook, ePUB)139,99 €
- Howard EisnerManaging Complex Systems (eBook, ePUB)74,99 €
- Carole RossiAl-based Energetic Nano Materials (eBook, ePUB)139,99 €
- Nano Lithography (eBook, ePUB)139,99 €
- Enabling 5G Communication Systems to Support Vertical Industries (eBook, ePUB)105,99 €
- Charlotte Tripon-CanselietNanoscale Microwave Engineering (eBook, ePUB)139,99 €
- Smart Sensor Systems (eBook, ePUB)82,99 €
-
-
-
This book will present the theoretical and technological elements of nanosystems. Among the different topics discussed, the authors include the electromechanical properties of NEMS, the scaling effects that give these their interesting properties for different applications and the current manufacturing processes. The authors aim to provide useful tools for future readers and will provide an accurate picture of current and future research in the field.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 212
- Erscheinungstermin: 2. Juni 2015
- Englisch
- ISBN-13: 9781119177999
- Artikelnr.: 43086412
- Verlag: John Wiley & Sons
- Seitenzahl: 212
- Erscheinungstermin: 2. Juni 2015
- Englisch
- ISBN-13: 9781119177999
- Artikelnr.: 43086412
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Laurent DURAFFOURG is Staff Scientist at the CEA/LETI-Minatec laboratories in Grenoble, France. Julien ARCAMONE is a Business Developer MEMS at CEA-LETI in Grenoble, France.
PREFACE vii
PHYSICAL CONSTANTS ix
NOTATIONS xi
CHAPTER 1. FROM MEMS TO NEMS 1
1.1. Micro- and nanoelectromechanical systems: an overview 1
1.2. Conclusion 9
CHAPTER 2. TRANSDUCTION ON THE NANOMETRIC SCALE AND THE NOTION OF NOISE 13
2.1. Mechanical transfer function 14
2.2. Transduction principles 20
2.2.1. The actuation of nanostructures 23
2.2.2. Detection 31
2.3. Self-oscillation and noises 49
2.4. Conclusion 58
CHAPTER 3. MONOLITHIC INTEGRATION OF NEMS WITH THEIR READOUT ELECTRONICS 61
3.1. Foreword 61
3.1.1. Why integrate NEMS with their readout electronics? 61
3.1.2. What are the differences between MEMS-CMOS and NEMS-CMOS? 62
3.2. The advantages of and main approaches to monolithic integration 64
3.2.1. A comparison of integration schemes and their electrical
performance 64
3.2.2. Closed-loop NEMS-CMOS oscillators: the essential building block for
NEMS-based frequency sensors 69
3.2.3. Overview of the main achievements from the perspective of
manufacturing technology 70
3.3. Analysis of some significant achievements from the perspective of
transduction 75
3.3.1. Examples of capacitive NEMS-CMOS 75
3.3.2. Examples of piezoresistive NEMS-CMOS 82
3.3.3. Alternative approaches 85
3.4. Conclusions and future perspectives 86
CHAPTER 4. NEMS AND SCALING EFFECTS 89
4.1. Introduction 89
4.1.1. Intrinsic losses 96
4.1.2. Extrinsic losses 97
4.2. Near field effect in a nanostructure: Casimir force 102
4.2.1. Intuitive explanation of the Casimir force 102
4.2.2. The problem 105
4.2.3. Rigorous calculation of the Casimir force between two silicon slabs
107
4.2.4. Impact of the Casimir force in a nano-accelerometer 113
4.2.5. Conclusion 117
4.3. Example of "intrinsic" scaling effects: electrical conduction laws 117
4.3.1. Electrical resistivity 117
4.3.2. Piezoresistive effect 125
4.4. Optomechanical nano-oscillators and quantum optomechanics 136
4.5. Conclusion 147
CHAPTER 5. CONCLUSION AND APPLICATION PROSPECTS: FROM FUNDAMENTAL PHYSICS
TO APPLIED PHYSICS 149
APPENDIX 167
BIBLIOGRAPHY 175
INDEX 193
PHYSICAL CONSTANTS ix
NOTATIONS xi
CHAPTER 1. FROM MEMS TO NEMS 1
1.1. Micro- and nanoelectromechanical systems: an overview 1
1.2. Conclusion 9
CHAPTER 2. TRANSDUCTION ON THE NANOMETRIC SCALE AND THE NOTION OF NOISE 13
2.1. Mechanical transfer function 14
2.2. Transduction principles 20
2.2.1. The actuation of nanostructures 23
2.2.2. Detection 31
2.3. Self-oscillation and noises 49
2.4. Conclusion 58
CHAPTER 3. MONOLITHIC INTEGRATION OF NEMS WITH THEIR READOUT ELECTRONICS 61
3.1. Foreword 61
3.1.1. Why integrate NEMS with their readout electronics? 61
3.1.2. What are the differences between MEMS-CMOS and NEMS-CMOS? 62
3.2. The advantages of and main approaches to monolithic integration 64
3.2.1. A comparison of integration schemes and their electrical
performance 64
3.2.2. Closed-loop NEMS-CMOS oscillators: the essential building block for
NEMS-based frequency sensors 69
3.2.3. Overview of the main achievements from the perspective of
manufacturing technology 70
3.3. Analysis of some significant achievements from the perspective of
transduction 75
3.3.1. Examples of capacitive NEMS-CMOS 75
3.3.2. Examples of piezoresistive NEMS-CMOS 82
3.3.3. Alternative approaches 85
3.4. Conclusions and future perspectives 86
CHAPTER 4. NEMS AND SCALING EFFECTS 89
4.1. Introduction 89
4.1.1. Intrinsic losses 96
4.1.2. Extrinsic losses 97
4.2. Near field effect in a nanostructure: Casimir force 102
4.2.1. Intuitive explanation of the Casimir force 102
4.2.2. The problem 105
4.2.3. Rigorous calculation of the Casimir force between two silicon slabs
107
4.2.4. Impact of the Casimir force in a nano-accelerometer 113
4.2.5. Conclusion 117
4.3. Example of "intrinsic" scaling effects: electrical conduction laws 117
4.3.1. Electrical resistivity 117
4.3.2. Piezoresistive effect 125
4.4. Optomechanical nano-oscillators and quantum optomechanics 136
4.5. Conclusion 147
CHAPTER 5. CONCLUSION AND APPLICATION PROSPECTS: FROM FUNDAMENTAL PHYSICS
TO APPLIED PHYSICS 149
APPENDIX 167
BIBLIOGRAPHY 175
INDEX 193
PREFACE vii
PHYSICAL CONSTANTS ix
NOTATIONS xi
CHAPTER 1. FROM MEMS TO NEMS 1
1.1. Micro- and nanoelectromechanical systems: an overview 1
1.2. Conclusion 9
CHAPTER 2. TRANSDUCTION ON THE NANOMETRIC SCALE AND THE NOTION OF NOISE 13
2.1. Mechanical transfer function 14
2.2. Transduction principles 20
2.2.1. The actuation of nanostructures 23
2.2.2. Detection 31
2.3. Self-oscillation and noises 49
2.4. Conclusion 58
CHAPTER 3. MONOLITHIC INTEGRATION OF NEMS WITH THEIR READOUT ELECTRONICS 61
3.1. Foreword 61
3.1.1. Why integrate NEMS with their readout electronics? 61
3.1.2. What are the differences between MEMS-CMOS and NEMS-CMOS? 62
3.2. The advantages of and main approaches to monolithic integration 64
3.2.1. A comparison of integration schemes and their electrical
performance 64
3.2.2. Closed-loop NEMS-CMOS oscillators: the essential building block for
NEMS-based frequency sensors 69
3.2.3. Overview of the main achievements from the perspective of
manufacturing technology 70
3.3. Analysis of some significant achievements from the perspective of
transduction 75
3.3.1. Examples of capacitive NEMS-CMOS 75
3.3.2. Examples of piezoresistive NEMS-CMOS 82
3.3.3. Alternative approaches 85
3.4. Conclusions and future perspectives 86
CHAPTER 4. NEMS AND SCALING EFFECTS 89
4.1. Introduction 89
4.1.1. Intrinsic losses 96
4.1.2. Extrinsic losses 97
4.2. Near field effect in a nanostructure: Casimir force 102
4.2.1. Intuitive explanation of the Casimir force 102
4.2.2. The problem 105
4.2.3. Rigorous calculation of the Casimir force between two silicon slabs
107
4.2.4. Impact of the Casimir force in a nano-accelerometer 113
4.2.5. Conclusion 117
4.3. Example of "intrinsic" scaling effects: electrical conduction laws 117
4.3.1. Electrical resistivity 117
4.3.2. Piezoresistive effect 125
4.4. Optomechanical nano-oscillators and quantum optomechanics 136
4.5. Conclusion 147
CHAPTER 5. CONCLUSION AND APPLICATION PROSPECTS: FROM FUNDAMENTAL PHYSICS
TO APPLIED PHYSICS 149
APPENDIX 167
BIBLIOGRAPHY 175
INDEX 193
PHYSICAL CONSTANTS ix
NOTATIONS xi
CHAPTER 1. FROM MEMS TO NEMS 1
1.1. Micro- and nanoelectromechanical systems: an overview 1
1.2. Conclusion 9
CHAPTER 2. TRANSDUCTION ON THE NANOMETRIC SCALE AND THE NOTION OF NOISE 13
2.1. Mechanical transfer function 14
2.2. Transduction principles 20
2.2.1. The actuation of nanostructures 23
2.2.2. Detection 31
2.3. Self-oscillation and noises 49
2.4. Conclusion 58
CHAPTER 3. MONOLITHIC INTEGRATION OF NEMS WITH THEIR READOUT ELECTRONICS 61
3.1. Foreword 61
3.1.1. Why integrate NEMS with their readout electronics? 61
3.1.2. What are the differences between MEMS-CMOS and NEMS-CMOS? 62
3.2. The advantages of and main approaches to monolithic integration 64
3.2.1. A comparison of integration schemes and their electrical
performance 64
3.2.2. Closed-loop NEMS-CMOS oscillators: the essential building block for
NEMS-based frequency sensors 69
3.2.3. Overview of the main achievements from the perspective of
manufacturing technology 70
3.3. Analysis of some significant achievements from the perspective of
transduction 75
3.3.1. Examples of capacitive NEMS-CMOS 75
3.3.2. Examples of piezoresistive NEMS-CMOS 82
3.3.3. Alternative approaches 85
3.4. Conclusions and future perspectives 86
CHAPTER 4. NEMS AND SCALING EFFECTS 89
4.1. Introduction 89
4.1.1. Intrinsic losses 96
4.1.2. Extrinsic losses 97
4.2. Near field effect in a nanostructure: Casimir force 102
4.2.1. Intuitive explanation of the Casimir force 102
4.2.2. The problem 105
4.2.3. Rigorous calculation of the Casimir force between two silicon slabs
107
4.2.4. Impact of the Casimir force in a nano-accelerometer 113
4.2.5. Conclusion 117
4.3. Example of "intrinsic" scaling effects: electrical conduction laws 117
4.3.1. Electrical resistivity 117
4.3.2. Piezoresistive effect 125
4.4. Optomechanical nano-oscillators and quantum optomechanics 136
4.5. Conclusion 147
CHAPTER 5. CONCLUSION AND APPLICATION PROSPECTS: FROM FUNDAMENTAL PHYSICS
TO APPLIED PHYSICS 149
APPENDIX 167
BIBLIOGRAPHY 175
INDEX 193