The RF front-end is the most fundamental building block of any wireless system. Nanometer CMOS RFICs for Mobile TV Applications brings together what IC design engineers need to know for the development of low-cost, wide-dynamic range RF front-ends for today's fastest growing communication markets. Drawing on their experience from both industry and academia, the authors use the emerging DVB-H mobile TV standard to provide readers with the step-by-step design progression of the described nanometer CMOS RFICs.
Nanometer CMOS RFICs for Mobile TV Applications focuses on how to break the trade-off between power consumption and performance (linearity and noise figure) by optimizing the mobile TV front-end dynamic range in three hierarchical levels: the intrinsic MOSFET level, the circuit level, and the architectural level. It begins by discussing the fundamental concepts of MOSFET dynamic range, including nonlinearity and noise. It then moves to the circuit level introducing the challenges associated with designing wide-dynamic range, variable-gain, broadband low-noise amplifiers (LNAs). The book gives a detailed analysis of a new noise-canceling technique that helps CMOS LNAs achieve a sub - 2 dB wideband noise figure. Lastly, the book deals with the front-end dynamic range optimization process from the systems perspective by introducing the active and passive automatic gain control (AGC) mechanism.
By describing in detail the physical realization of several 65 nm CMOS test chips, this book uncovers the practical challenges inherent in using nanometer CMOS technologies for RF circuit design and provides the solutions needed to overcome those challenges.
Nanometer CMOS RFICs for Mobile TV Applications focuses on how to break the trade-off between power consumption and performance (linearity and noise figure) by optimizing the mobile TV front-end dynamic range in three hierarchical levels: the intrinsic MOSFET level, the circuit level, and the architectural level. It begins by discussing the fundamental concepts of MOSFET dynamic range, including nonlinearity and noise. It then moves to the circuit level introducing the challenges associated with designing wide-dynamic range, variable-gain, broadband low-noise amplifiers (LNAs). The book gives a detailed analysis of a new noise-canceling technique that helps CMOS LNAs achieve a sub - 2 dB wideband noise figure. Lastly, the book deals with the front-end dynamic range optimization process from the systems perspective by introducing the active and passive automatic gain control (AGC) mechanism.
By describing in detail the physical realization of several 65 nm CMOS test chips, this book uncovers the practical challenges inherent in using nanometer CMOS technologies for RF circuit design and provides the solutions needed to overcome those challenges.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.