With a machine learning approach and less focus on linguistic details, this gentle introduction to natural language processing develops fundamental mathematical and deep learning models for NLP under a unified framework. NLP problems are systematically organised by their machine learning nature, including classification, sequence labelling, and sequence-to-sequence problems. Topics covered include statistical machine learning and deep learning models, text classification and structured prediction models, generative and discriminative models, supervised and unsupervised learning with latent variables, neural networks, and transition-based methods. Rich connections are drawn between concepts throughout the book, equipping students with the tools needed to establish a deep understanding of NLP solutions, adapt existing models, and confidently develop innovative models of their own. Featuring a host of examples, intuition, and end of chapter exercises, plus sample code available as an online resource, this textbook is an invaluable tool for the upper undergraduate and graduate student.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
'An amazingly compact, and at the same time comprehensive, introduction and reference to natural language processing (NLP). It describes the NLP basics, then employs this knowledge to solve typical NLP problems. It achieves very high coverage of NLP through a clever abstraction to typical high-level tasks, such as sequence labelling. Finally, it explains the topics in deep learning. The book captivates through its simple elegance, depth, and accessibility to a wide range of readers from undergrads to experienced researchers.' Iryna Gurevych, Technical University of Darmstadt, Germany