You'll start by understanding how NLP and its various concepts work. Having got to grips with the basics, you'll explore important tools and libraries in Java for NLP, such as CoreNLP, OpenNLP, Neuroph, and Mallet. You'll then start performing NLP on different inputs and tasks, such as tokenization, model training, parts-of-speech and parsing trees. You'll learn about statistical machine translation, summarization, dialog systems, complex searches, supervised and unsupervised NLP, and more.
By the end of this book, you'll have learned more about NLP, neural networks, and various other trained models in Java for enhancing the performance of NLP applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.