-26%11
36,99 €
49,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
-26%11
36,99 €
49,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
Als Download kaufen
49,95 €****
-26%11
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
49,95 €****
-26%11
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Neuronale Netze sind in den letzten Jahren Gegenstand intensiver Forschungen gewesen. Dieses Buch verbindet die Darstellung neuester Ergebnisse aus dem Bereich der Lernverfahren mit anwendungsbezogenen Aspekten. Es werden methodische Prinzipien der Erstellung von Softwaresystemen, die auf konnektionistischen Verfahren basieren, herausgearbeitet. Fallbeispiele aus unterschiedlichen Anwendungsdomänen zeigen die vielfältigen Einsatzmöglichkeiten für Neuronale Netze.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 19.93MB
Andere Kunden interessierten sich auch für
- -33%11Neuronale Netze (eBook, PDF)33,26 €
- -20%11Anita LenzNeuronale Netze und Subjektivität (eBook, PDF)35,96 €
- -20%11Patricia Ladewig-RiedlerNeuronale Netze für Ingenieure (eBook, PDF)35,96 €
- -22%11Kleines Handbuch Neuronale Netze (eBook, PDF)34,99 €
- -26%11Rüdiger BrauseNeuronale Netze (eBook, PDF)36,99 €
- -22%11Heike SpeckmannDem Denken abgeschaut (eBook, PDF)42,99 €
- -22%11Konrad ZusePetri-Netze aus der Sicht des Ingenieurs (eBook, PDF)42,99 €
- -22%11
- -22%11
- -55%11
Neuronale Netze sind in den letzten Jahren Gegenstand intensiver Forschungen gewesen. Dieses Buch verbindet die Darstellung neuester Ergebnisse aus dem Bereich der Lernverfahren mit anwendungsbezogenen Aspekten. Es werden methodische Prinzipien der Erstellung von Softwaresystemen, die auf konnektionistischen Verfahren basieren, herausgearbeitet. Fallbeispiele aus unterschiedlichen Anwendungsdomänen zeigen die vielfältigen Einsatzmöglichkeiten für Neuronale Netze.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 249
- Erscheinungstermin: 8. März 2013
- Deutsch
- ISBN-13: 9783322868305
- Artikelnr.: 53390339
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 249
- Erscheinungstermin: 8. März 2013
- Deutsch
- ISBN-13: 9783322868305
- Artikelnr.: 53390339
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. A. Scherer war von 1990-1994 wissenschaftlicher Mitarbeiter an der Fern-Universität Hagen, wo er Erfahrungen mit Neuronalen Netzen sammelte. In einer Reihe von industrienahen Projekten, an denen Partner aus dem Automobil- und Bankenbereich beteiligt waren.
1 Einführung.- 1.1 Was ist ein neuronales Netz?.- 1.2 Eigenschaften neuronaler Netze.- 1.3 Zur Historie.- 1.4 Problemklassen.- 1.5 Das Forschungsgebiet neuronale Netze.- 1.6 Buchüberblick.- 1.7 Einige ausgewählte Lehrbücher.- 1.8 Fragen zu Kapitel 1.- 2 Mustererkennung.- 2.1 Einführung.- 2.2 Entscheidungsgrenzen.- 2.3 Klassifikationstechniken.- 2.4 Fragen zu Kapitel 2.- 3 Biologische Grundlagen.- 3.1 Die Nervenzelle.- 3.2 Erregung von Nerven.- 3.3 Synaptische Übertragung.- 3.4 Physiologie kleiner Nervenverbände.- 3.5 Zusammenfassung.- 3.6 Fragen zu Kapitel 3.- 4 Grundlagen neuronaler Netze.- 4.1 Die "building blocks".- 4.2 Das Neuron.- 4.3 Der Netzwerkgraph.- 4.4 Die Lernregel.- 4.5 Datenräume.- 4.6 Zusammenfassung.- 4.7 Fragen zu Kapitel 4.- 5 Das Perzeptron.- 5.1 Einführung.- 5.2 Das Perzeptron-Lernverfahren.- 5.3 Lineare Separierbarkeit.- 5.4 Zusammenfassung.- 5.5 Fragen zu Kapitel 5.- 6 Überwachtes Lernen.- 6.1 Einführung.- 6.2 Backpropagation.- 6.3 Erweiterungen zu Backpropagation.- 6.4 Quickprop.- 6.5 Resilient Propagation.- 6.6 Verfahren zur Minimierung von Netzen.- 6.7 Zusammenfassung.- 6.8 Fragen zu Kapitel 6.- 7 Kohonen-Netze.- 7.1 Einleitung.- 7.2 Kohonens Modell.- 7.3 Betrachtungen zur Konvergenz.- 7.4 Zusammenfassung.- 7.5 Fragen zu Kapitel 7.- 8 ART-Netze.- 8.1 ART-1-Netze.- 8.2 Weitere ART-Netze.- 8.3 Zusammenfassung.- 8.4 Fragen zu Kapitel 8.- 9 Hopfield-Netze.- 9.1 Einführung.- 9.2 Das Hopfield-Modell.- 9.3 Lernen und Abrufen von Informationen.- 9.4 Ergänzendes zu Hopfield-Netzen.- 9.5 Zusammenfassung.- 9.6 Fragen zu Kapitel 9.- 10 Die Boltzmann-Maschine.- 10.1 Einführung.- 10.2 Die stochastische Erweiterung.- 10.3 Das Lernverfahren.- 10.4 Zusammenfassung.- 10.5 Fragen zu Kapitel 10.- 11 Cascade-Correlation-Netze.- 11.1 Einführung.-11.2 Das Verfahren.- 11.3 Zusammenfassung.- 11.4 Fragen zu Kapitel 11.- 12 Counterpropagation.- 12.1 Einführung.- 12.2 Aufbau eines Counterpropagation-Netzes.- 12.3 Die Kohonen-Schicht.- 12.4 Die Grossberg-Schicht.- 12.5 Zusammenfassung.- 12.6 Fragen zu Kapitel 12.- 13 Probabilistische Neuronale Netze.- 13.1 Einführung.- 13.2 Bayes' sche Klassifikatoren.- 13.3 Die Architektur von PNN.- 13.4 Zusammenfassung.- 13.5 Fragen zu Kapitel 13.- 14 Radiale Basisfunktionsnetze.- 14.1 Einführung.- 14.2 Aufbau eines RBF-Netzes.- 14.3 Training von RBF-Netzen.- 14.4 Zusammenfassung.- 14.5 Fragen zu Kapitel 14.- 15 Neuronale Netze und Fuzzy-Logik.- 15.1 Einführung.- 15.2 Grundlagen der Fuzzy-Logik.- 15.3 Neuro-Fuzzy-Systeme.- 15.4 Zusammenfassung.- 15.5 Fragen zu Kapitel 15.- 16 Neuronale Netze und genetische Algorithmen.- 16.1 Grundlagen evolutionärer Prozesse.- 16.2 Genetische Algorithmen.- 16.3 Neuro-genetische Verfahren.- 16.4 Zusammenfassung.- 16.5 Fragen zur Kapitel 16.- 17 Entwicklung neuronaler Systeme.- 17.1 Ein Phasenmodell für neuronale Systeme.- 17.2 Datenmodellierung.- 17.3 Erstellen des Klassifikators.- 17.4 Performanz von Klassifikatoren.- 17.5 Testen des Klassifikators.- 17.6 Optimieren von Klassifikatoren.- 17.6 Zusammenfassung.- 17.7 Fragen zu Kapitel 17.- 18 Anwendungsbeispiele.- 18.1 Finanzwirtschaft.- 18.2 Computerunterstütze Fertigung.- 18.3 Qualitätssicherung.- 18.4 Produktionsplanung.- 19 Literaturverzeichnis.- 20 Index.
1 Einführung.- 1.1 Was ist ein neuronales Netz?.- 1.2 Eigenschaften neuronaler Netze.- 1.3 Zur Historie.- 1.4 Problemklassen.- 1.5 Das Forschungsgebiet neuronale Netze.- 1.6 Buchüberblick.- 1.7 Einige ausgewählte Lehrbücher.- 1.8 Fragen zu Kapitel 1.- 2 Mustererkennung.- 2.1 Einführung.- 2.2 Entscheidungsgrenzen.- 2.3 Klassifikationstechniken.- 2.4 Fragen zu Kapitel 2.- 3 Biologische Grundlagen.- 3.1 Die Nervenzelle.- 3.2 Erregung von Nerven.- 3.3 Synaptische Übertragung.- 3.4 Physiologie kleiner Nervenverbände.- 3.5 Zusammenfassung.- 3.6 Fragen zu Kapitel 3.- 4 Grundlagen neuronaler Netze.- 4.1 Die "building blocks".- 4.2 Das Neuron.- 4.3 Der Netzwerkgraph.- 4.4 Die Lernregel.- 4.5 Datenräume.- 4.6 Zusammenfassung.- 4.7 Fragen zu Kapitel 4.- 5 Das Perzeptron.- 5.1 Einführung.- 5.2 Das Perzeptron-Lernverfahren.- 5.3 Lineare Separierbarkeit.- 5.4 Zusammenfassung.- 5.5 Fragen zu Kapitel 5.- 6 Überwachtes Lernen.- 6.1 Einführung.- 6.2 Backpropagation.- 6.3 Erweiterungen zu Backpropagation.- 6.4 Quickprop.- 6.5 Resilient Propagation.- 6.6 Verfahren zur Minimierung von Netzen.- 6.7 Zusammenfassung.- 6.8 Fragen zu Kapitel 6.- 7 Kohonen-Netze.- 7.1 Einleitung.- 7.2 Kohonens Modell.- 7.3 Betrachtungen zur Konvergenz.- 7.4 Zusammenfassung.- 7.5 Fragen zu Kapitel 7.- 8 ART-Netze.- 8.1 ART-1-Netze.- 8.2 Weitere ART-Netze.- 8.3 Zusammenfassung.- 8.4 Fragen zu Kapitel 8.- 9 Hopfield-Netze.- 9.1 Einführung.- 9.2 Das Hopfield-Modell.- 9.3 Lernen und Abrufen von Informationen.- 9.4 Ergänzendes zu Hopfield-Netzen.- 9.5 Zusammenfassung.- 9.6 Fragen zu Kapitel 9.- 10 Die Boltzmann-Maschine.- 10.1 Einführung.- 10.2 Die stochastische Erweiterung.- 10.3 Das Lernverfahren.- 10.4 Zusammenfassung.- 10.5 Fragen zu Kapitel 10.- 11 Cascade-Correlation-Netze.- 11.1 Einführung.-11.2 Das Verfahren.- 11.3 Zusammenfassung.- 11.4 Fragen zu Kapitel 11.- 12 Counterpropagation.- 12.1 Einführung.- 12.2 Aufbau eines Counterpropagation-Netzes.- 12.3 Die Kohonen-Schicht.- 12.4 Die Grossberg-Schicht.- 12.5 Zusammenfassung.- 12.6 Fragen zu Kapitel 12.- 13 Probabilistische Neuronale Netze.- 13.1 Einführung.- 13.2 Bayes' sche Klassifikatoren.- 13.3 Die Architektur von PNN.- 13.4 Zusammenfassung.- 13.5 Fragen zu Kapitel 13.- 14 Radiale Basisfunktionsnetze.- 14.1 Einführung.- 14.2 Aufbau eines RBF-Netzes.- 14.3 Training von RBF-Netzen.- 14.4 Zusammenfassung.- 14.5 Fragen zu Kapitel 14.- 15 Neuronale Netze und Fuzzy-Logik.- 15.1 Einführung.- 15.2 Grundlagen der Fuzzy-Logik.- 15.3 Neuro-Fuzzy-Systeme.- 15.4 Zusammenfassung.- 15.5 Fragen zu Kapitel 15.- 16 Neuronale Netze und genetische Algorithmen.- 16.1 Grundlagen evolutionärer Prozesse.- 16.2 Genetische Algorithmen.- 16.3 Neuro-genetische Verfahren.- 16.4 Zusammenfassung.- 16.5 Fragen zur Kapitel 16.- 17 Entwicklung neuronaler Systeme.- 17.1 Ein Phasenmodell für neuronale Systeme.- 17.2 Datenmodellierung.- 17.3 Erstellen des Klassifikators.- 17.4 Performanz von Klassifikatoren.- 17.5 Testen des Klassifikators.- 17.6 Optimieren von Klassifikatoren.- 17.6 Zusammenfassung.- 17.7 Fragen zu Kapitel 17.- 18 Anwendungsbeispiele.- 18.1 Finanzwirtschaft.- 18.2 Computerunterstütze Fertigung.- 18.3 Qualitätssicherung.- 18.4 Produktionsplanung.- 19 Literaturverzeichnis.- 20 Index.