New Techniques in Digital Holography (eBook, ePUB)
Redaktion: Picart, Pascal
139,99 €
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
139,99 €
Als Download kaufen
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
New Techniques in Digital Holography (eBook, ePUB)
Redaktion: Picart, Pascal
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 7.31MB
Andere Kunden interessierten sich auch für
- R. W. G. HuntMeasuring Colour (eBook, ePUB)95,99 €
- Stochastic Geometry for Image Analysis (eBook, ePUB)144,99 €
- Ali MoukademTime-Frequency Domain for Segmentation and Classification of Non-stationary Signals (eBook, ePUB)139,99 €
- Advances in Hyperspectral Image Processing Techniques (eBook, ePUB)134,99 €
- Jonathan B. PhillipsCamera Image Quality Benchmarking, Enhanced Edition (eBook, ePUB)107,78 €
- Martin J. RichardsonThe Hologram (eBook, ePUB)95,99 €
- Hybrid Intelligence for Image Analysis and Understanding (eBook, ePUB)108,99 €
-
-
-
A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 320
- Erscheinungstermin: 23. Februar 2015
- Englisch
- ISBN-13: 9781119091929
- Artikelnr.: 42370864
- Verlag: John Wiley & Sons
- Seitenzahl: 320
- Erscheinungstermin: 23. Februar 2015
- Englisch
- ISBN-13: 9781119091929
- Artikelnr.: 42370864
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Pascal PICART, Professor at Université du Maine, Le Mans, France
INTRODUCTION xi
Passcal PICART
CHAPTER 1. BASIC FUNDAMENTALS OF DIGITAL HOLOGRAPHY 1
Pascal PICART, Michel GROSS and Pierre MARQUET
1.1. Digital holograms 2
1.1.1. Interferences between the object and reference waves 2
1.1.2. Role of the image sensor 5
1.1.3. Demodulation of digital holograms 9
1.2. Back-propagation to the object plane 16
1.2.1. Monochromatic spherical and plane waves 17
1.2.2. Propagation equation 18
1.2.3. Angular spectrum transfer function 19
1.2.4. Kirchhoff and Rayleigh-Sommerfeld formulas 21
1.2.5. Fresnel approximation and Fresnel diffraction integral 22
1.3. Numerical reconstruction of digital holograms 24
1.3.1. Discrete Fresnel transform 24
1.3.2. Reconstruction with convolution 30
1.4. Holographic setups 37
1.4.1. Fresnel holography 37
1.4.2. Fresnel holography with spatial spectrum reduction 38
1.4.3. Fourier holography 38
1.4.4. Lensless Fourier holography 39
1.4.5. Image-plane holography 40
1.4.6. Holographic microscopy 41
1.4.7. In-line Gabor holography 43
1.5. Digital holographic interferometry 45
1.5.1. Reconstruction of the phase of the object 45
1.5.2. Optical phase variations and the sensitivity vector 46
1.5.3. Phase difference method 47
1.5.4. Phase unwrapping 49
1.6. Quantitative phase tomography 49
1.7. Conclusion 53
1.8. Bibliography 54
CHAPTER 2. DIGITAL IN-LINE HOLOGRAPHY APPLIED TO FLUID FLOWS 67
Sébastien COËTMELLEC, Denis LEBRUN and Marc BRUNEL
2.1. Examples of measurements in flows 68
2.1.1. Increasing NA with a divergent wave 68
2.1.2. Choice of the magnification 70
2.1.3. 3D velocity measurements in a turbulent boundary layer 70
2.1.4. Cavitation bubbles measurements 77
2.2. The fractional-order Fourier transform 81
2.3. Digital in-line holography with a sub-picosecond laser beam 82
2.4. Spatially partially coherent source applied to the digital in-line
holography 89
2.5. Digital in-line holography for phase objects metrology 94
2.5.1. In-line holograms of transparent phase objects 94
2.5.2. Reconstruction 97
2.5.3. Experimental results 98
2.6. Bibliography 101
CHAPTER 3. DIGITAL COLOR HOLOGRAPHY FOR ANALYZING UNSTEADY WAKE FLOWS 107
JEAN MICHEL DESSE AND PASCAL PICART
3.1. Advantage of using multiple wavelengths 109
3.2. Analysis of subsonic wake flows 112
3.2.1. Description of the digital color holographic interferometer 112
3.2.2. Results obtained with subsonic wake flows 114
3.2.3. Comparison between holographic plate and digital holograms 116
3.3. Analysis of a supersonic jet with high-density gradients 117
3.3.1. Definition of an optical setup 118
3.3.2. Results obtained with a supersonic jet 122
3.4. Analysis of a hydrogen jet in a hypersonic flow 125
3.4.1. Experimental setup 126
3.4.2. Experimental results 128
3.4.3. Comparisons with numerical simulations 130
3.5. Conclusion 132
3.6. Acknowledgment 133
3.7. Bibliography 134
CHAPTER 4. AUTOMATION OF DIGITAL HOLOGRAPHIC DETECTION PROCEDURES FOR LIFE
SCIENCES APPLICATIONS 137
Ahmed EL MALLAHI, Christophe MINETTI and Frank DUBOIS
4.1. Introduction 137
4.2. Experimental protocol 139
4.2.1. Optical setup 139
4.2.2. Dynamic monitoring 140
4.3. General tools 140
4.3.1. Extraction of the full interferometric information 140
4.3.2. Compensation of the phase 141
4.3.3. Border processing 143
4.3.4. Best focus determination 144
4.4. Automated 3D detection 145
4.4.1. Introduction 145
4.4.2. Description of the testing samples 146
4.4.3. In-plane detection 147
4.4.4. In-depth detection 158
4.4.5. Discussion 160
4.5. Application 162
4.6. Conclusions 164
4.7. Bibliography 165
CHAPTER 5. QUANTITATIVE PHASE-DIGITAL HOLOGRAPHIC MICROSCOPY: A NEW
MODALITY FOR LIVE CELL IMAGING 169
Pierre MARQUET, Benjamin RAPPAZ and Nicolas PAVILLON
5.1. Introduction 170
5.2. Cell imaging with quantitative phase DHM 172
5.2.1. The origin and content of the quantitative phase signal 172
5.2.2. Cell counting and classification analysis 174
5.2.3. Exploration of cell movements and dynamics 175
5.2.4. Dry mass, cell growth and cell cycle 175
5.2.5. Cell membrane fluctuations and biomechanical properties 176
5.2.6. Dynamics of absolute cell volume and transmembrane water movements
177
5.3. High-content phenotypic screening based on QP-DHM 179
5.4. Multimodal QP-DHM 182
5.4.1. Multimodal fluorescence QP-DHM 182
5.4.2. Multimodal Raman-QP-DHM 183
5.4.3. Multimodal electrophysiology QP-DHM 186
5.5. Resolving neuronal network activity and visualizing spine dynamics 190
5.5.1. Background 190
5.5.2. Imaging neuronal activity by measuring transmembrane water movements
with QP-DHM 193
5.5.3. 3D Visualization of dendritic spine dynamics with quantitative phase
tomographic microscopy (QP-TM) 197
5.6. Perspectives 198
5.7. Acknowledgments 201
5.8. Bibliography 201
CHAPTER 6. LONG-WAVE INFRARED DIGITAL HOLOGRAPHY 219
Marc GEORGES
6.1. Introduction 219
6.2. Analog hologram recording in LWIR 221
6.3. Digital hologram recording in LWIR 222
6.3.1. Hardware components 222
6.3.2. Specific features of the LWIR domain 229
6.4. Typical applications of LWIR digital holography 235
6.4.1. Recording holograms of large objects in LWIR and display in visible
235
6.4.2. Reconstruction of images through smoke and flames 237
6.4.3. Large deformations of specular aspheric reflectors 240
6.4.4. Combined holography and thermography for thermomechanical analysis
and non-destructive testing 243
6.5. Conclusions: future prospects 246
6.6. Bibliography 247
CHAPTER 7. FULL FIELD HOLOGRAPHIC VIBROMETRY AT ULTIMATE LIMITS 255
Nicolas VERRIER, Michael ATLAN and Michel GROSS
7.1. Introduction 255
7.2. Heterodyne holography 257
7.2.1. Accurate phase shift and holographic detection bandwidth 260
7.2.2. Shot noise holographic detection 264
7.3. Holographic vibrometry 268
7.3.1. Optical signal scattered by a vibrating object 268
7.3.2. Selective detection of the sideband components Em: sideband
holography 270
7.3.3. Sideband holography for large amplitude of vibration 273
7.3.4. Sideband holography with strobe illumination 277
7.3.5. Sideband holography for small amplitude of vibration 280
7.4. Conclusion 290
7.5. Bibliography 290
LIST OF AUTHORS 295
INDEX 297
Passcal PICART
CHAPTER 1. BASIC FUNDAMENTALS OF DIGITAL HOLOGRAPHY 1
Pascal PICART, Michel GROSS and Pierre MARQUET
1.1. Digital holograms 2
1.1.1. Interferences between the object and reference waves 2
1.1.2. Role of the image sensor 5
1.1.3. Demodulation of digital holograms 9
1.2. Back-propagation to the object plane 16
1.2.1. Monochromatic spherical and plane waves 17
1.2.2. Propagation equation 18
1.2.3. Angular spectrum transfer function 19
1.2.4. Kirchhoff and Rayleigh-Sommerfeld formulas 21
1.2.5. Fresnel approximation and Fresnel diffraction integral 22
1.3. Numerical reconstruction of digital holograms 24
1.3.1. Discrete Fresnel transform 24
1.3.2. Reconstruction with convolution 30
1.4. Holographic setups 37
1.4.1. Fresnel holography 37
1.4.2. Fresnel holography with spatial spectrum reduction 38
1.4.3. Fourier holography 38
1.4.4. Lensless Fourier holography 39
1.4.5. Image-plane holography 40
1.4.6. Holographic microscopy 41
1.4.7. In-line Gabor holography 43
1.5. Digital holographic interferometry 45
1.5.1. Reconstruction of the phase of the object 45
1.5.2. Optical phase variations and the sensitivity vector 46
1.5.3. Phase difference method 47
1.5.4. Phase unwrapping 49
1.6. Quantitative phase tomography 49
1.7. Conclusion 53
1.8. Bibliography 54
CHAPTER 2. DIGITAL IN-LINE HOLOGRAPHY APPLIED TO FLUID FLOWS 67
Sébastien COËTMELLEC, Denis LEBRUN and Marc BRUNEL
2.1. Examples of measurements in flows 68
2.1.1. Increasing NA with a divergent wave 68
2.1.2. Choice of the magnification 70
2.1.3. 3D velocity measurements in a turbulent boundary layer 70
2.1.4. Cavitation bubbles measurements 77
2.2. The fractional-order Fourier transform 81
2.3. Digital in-line holography with a sub-picosecond laser beam 82
2.4. Spatially partially coherent source applied to the digital in-line
holography 89
2.5. Digital in-line holography for phase objects metrology 94
2.5.1. In-line holograms of transparent phase objects 94
2.5.2. Reconstruction 97
2.5.3. Experimental results 98
2.6. Bibliography 101
CHAPTER 3. DIGITAL COLOR HOLOGRAPHY FOR ANALYZING UNSTEADY WAKE FLOWS 107
JEAN MICHEL DESSE AND PASCAL PICART
3.1. Advantage of using multiple wavelengths 109
3.2. Analysis of subsonic wake flows 112
3.2.1. Description of the digital color holographic interferometer 112
3.2.2. Results obtained with subsonic wake flows 114
3.2.3. Comparison between holographic plate and digital holograms 116
3.3. Analysis of a supersonic jet with high-density gradients 117
3.3.1. Definition of an optical setup 118
3.3.2. Results obtained with a supersonic jet 122
3.4. Analysis of a hydrogen jet in a hypersonic flow 125
3.4.1. Experimental setup 126
3.4.2. Experimental results 128
3.4.3. Comparisons with numerical simulations 130
3.5. Conclusion 132
3.6. Acknowledgment 133
3.7. Bibliography 134
CHAPTER 4. AUTOMATION OF DIGITAL HOLOGRAPHIC DETECTION PROCEDURES FOR LIFE
SCIENCES APPLICATIONS 137
Ahmed EL MALLAHI, Christophe MINETTI and Frank DUBOIS
4.1. Introduction 137
4.2. Experimental protocol 139
4.2.1. Optical setup 139
4.2.2. Dynamic monitoring 140
4.3. General tools 140
4.3.1. Extraction of the full interferometric information 140
4.3.2. Compensation of the phase 141
4.3.3. Border processing 143
4.3.4. Best focus determination 144
4.4. Automated 3D detection 145
4.4.1. Introduction 145
4.4.2. Description of the testing samples 146
4.4.3. In-plane detection 147
4.4.4. In-depth detection 158
4.4.5. Discussion 160
4.5. Application 162
4.6. Conclusions 164
4.7. Bibliography 165
CHAPTER 5. QUANTITATIVE PHASE-DIGITAL HOLOGRAPHIC MICROSCOPY: A NEW
MODALITY FOR LIVE CELL IMAGING 169
Pierre MARQUET, Benjamin RAPPAZ and Nicolas PAVILLON
5.1. Introduction 170
5.2. Cell imaging with quantitative phase DHM 172
5.2.1. The origin and content of the quantitative phase signal 172
5.2.2. Cell counting and classification analysis 174
5.2.3. Exploration of cell movements and dynamics 175
5.2.4. Dry mass, cell growth and cell cycle 175
5.2.5. Cell membrane fluctuations and biomechanical properties 176
5.2.6. Dynamics of absolute cell volume and transmembrane water movements
177
5.3. High-content phenotypic screening based on QP-DHM 179
5.4. Multimodal QP-DHM 182
5.4.1. Multimodal fluorescence QP-DHM 182
5.4.2. Multimodal Raman-QP-DHM 183
5.4.3. Multimodal electrophysiology QP-DHM 186
5.5. Resolving neuronal network activity and visualizing spine dynamics 190
5.5.1. Background 190
5.5.2. Imaging neuronal activity by measuring transmembrane water movements
with QP-DHM 193
5.5.3. 3D Visualization of dendritic spine dynamics with quantitative phase
tomographic microscopy (QP-TM) 197
5.6. Perspectives 198
5.7. Acknowledgments 201
5.8. Bibliography 201
CHAPTER 6. LONG-WAVE INFRARED DIGITAL HOLOGRAPHY 219
Marc GEORGES
6.1. Introduction 219
6.2. Analog hologram recording in LWIR 221
6.3. Digital hologram recording in LWIR 222
6.3.1. Hardware components 222
6.3.2. Specific features of the LWIR domain 229
6.4. Typical applications of LWIR digital holography 235
6.4.1. Recording holograms of large objects in LWIR and display in visible
235
6.4.2. Reconstruction of images through smoke and flames 237
6.4.3. Large deformations of specular aspheric reflectors 240
6.4.4. Combined holography and thermography for thermomechanical analysis
and non-destructive testing 243
6.5. Conclusions: future prospects 246
6.6. Bibliography 247
CHAPTER 7. FULL FIELD HOLOGRAPHIC VIBROMETRY AT ULTIMATE LIMITS 255
Nicolas VERRIER, Michael ATLAN and Michel GROSS
7.1. Introduction 255
7.2. Heterodyne holography 257
7.2.1. Accurate phase shift and holographic detection bandwidth 260
7.2.2. Shot noise holographic detection 264
7.3. Holographic vibrometry 268
7.3.1. Optical signal scattered by a vibrating object 268
7.3.2. Selective detection of the sideband components Em: sideband
holography 270
7.3.3. Sideband holography for large amplitude of vibration 273
7.3.4. Sideband holography with strobe illumination 277
7.3.5. Sideband holography for small amplitude of vibration 280
7.4. Conclusion 290
7.5. Bibliography 290
LIST OF AUTHORS 295
INDEX 297
INTRODUCTION xi
Passcal PICART
CHAPTER 1. BASIC FUNDAMENTALS OF DIGITAL HOLOGRAPHY 1
Pascal PICART, Michel GROSS and Pierre MARQUET
1.1. Digital holograms 2
1.1.1. Interferences between the object and reference waves 2
1.1.2. Role of the image sensor 5
1.1.3. Demodulation of digital holograms 9
1.2. Back-propagation to the object plane 16
1.2.1. Monochromatic spherical and plane waves 17
1.2.2. Propagation equation 18
1.2.3. Angular spectrum transfer function 19
1.2.4. Kirchhoff and Rayleigh-Sommerfeld formulas 21
1.2.5. Fresnel approximation and Fresnel diffraction integral 22
1.3. Numerical reconstruction of digital holograms 24
1.3.1. Discrete Fresnel transform 24
1.3.2. Reconstruction with convolution 30
1.4. Holographic setups 37
1.4.1. Fresnel holography 37
1.4.2. Fresnel holography with spatial spectrum reduction 38
1.4.3. Fourier holography 38
1.4.4. Lensless Fourier holography 39
1.4.5. Image-plane holography 40
1.4.6. Holographic microscopy 41
1.4.7. In-line Gabor holography 43
1.5. Digital holographic interferometry 45
1.5.1. Reconstruction of the phase of the object 45
1.5.2. Optical phase variations and the sensitivity vector 46
1.5.3. Phase difference method 47
1.5.4. Phase unwrapping 49
1.6. Quantitative phase tomography 49
1.7. Conclusion 53
1.8. Bibliography 54
CHAPTER 2. DIGITAL IN-LINE HOLOGRAPHY APPLIED TO FLUID FLOWS 67
Sébastien COËTMELLEC, Denis LEBRUN and Marc BRUNEL
2.1. Examples of measurements in flows 68
2.1.1. Increasing NA with a divergent wave 68
2.1.2. Choice of the magnification 70
2.1.3. 3D velocity measurements in a turbulent boundary layer 70
2.1.4. Cavitation bubbles measurements 77
2.2. The fractional-order Fourier transform 81
2.3. Digital in-line holography with a sub-picosecond laser beam 82
2.4. Spatially partially coherent source applied to the digital in-line
holography 89
2.5. Digital in-line holography for phase objects metrology 94
2.5.1. In-line holograms of transparent phase objects 94
2.5.2. Reconstruction 97
2.5.3. Experimental results 98
2.6. Bibliography 101
CHAPTER 3. DIGITAL COLOR HOLOGRAPHY FOR ANALYZING UNSTEADY WAKE FLOWS 107
JEAN MICHEL DESSE AND PASCAL PICART
3.1. Advantage of using multiple wavelengths 109
3.2. Analysis of subsonic wake flows 112
3.2.1. Description of the digital color holographic interferometer 112
3.2.2. Results obtained with subsonic wake flows 114
3.2.3. Comparison between holographic plate and digital holograms 116
3.3. Analysis of a supersonic jet with high-density gradients 117
3.3.1. Definition of an optical setup 118
3.3.2. Results obtained with a supersonic jet 122
3.4. Analysis of a hydrogen jet in a hypersonic flow 125
3.4.1. Experimental setup 126
3.4.2. Experimental results 128
3.4.3. Comparisons with numerical simulations 130
3.5. Conclusion 132
3.6. Acknowledgment 133
3.7. Bibliography 134
CHAPTER 4. AUTOMATION OF DIGITAL HOLOGRAPHIC DETECTION PROCEDURES FOR LIFE
SCIENCES APPLICATIONS 137
Ahmed EL MALLAHI, Christophe MINETTI and Frank DUBOIS
4.1. Introduction 137
4.2. Experimental protocol 139
4.2.1. Optical setup 139
4.2.2. Dynamic monitoring 140
4.3. General tools 140
4.3.1. Extraction of the full interferometric information 140
4.3.2. Compensation of the phase 141
4.3.3. Border processing 143
4.3.4. Best focus determination 144
4.4. Automated 3D detection 145
4.4.1. Introduction 145
4.4.2. Description of the testing samples 146
4.4.3. In-plane detection 147
4.4.4. In-depth detection 158
4.4.5. Discussion 160
4.5. Application 162
4.6. Conclusions 164
4.7. Bibliography 165
CHAPTER 5. QUANTITATIVE PHASE-DIGITAL HOLOGRAPHIC MICROSCOPY: A NEW
MODALITY FOR LIVE CELL IMAGING 169
Pierre MARQUET, Benjamin RAPPAZ and Nicolas PAVILLON
5.1. Introduction 170
5.2. Cell imaging with quantitative phase DHM 172
5.2.1. The origin and content of the quantitative phase signal 172
5.2.2. Cell counting and classification analysis 174
5.2.3. Exploration of cell movements and dynamics 175
5.2.4. Dry mass, cell growth and cell cycle 175
5.2.5. Cell membrane fluctuations and biomechanical properties 176
5.2.6. Dynamics of absolute cell volume and transmembrane water movements
177
5.3. High-content phenotypic screening based on QP-DHM 179
5.4. Multimodal QP-DHM 182
5.4.1. Multimodal fluorescence QP-DHM 182
5.4.2. Multimodal Raman-QP-DHM 183
5.4.3. Multimodal electrophysiology QP-DHM 186
5.5. Resolving neuronal network activity and visualizing spine dynamics 190
5.5.1. Background 190
5.5.2. Imaging neuronal activity by measuring transmembrane water movements
with QP-DHM 193
5.5.3. 3D Visualization of dendritic spine dynamics with quantitative phase
tomographic microscopy (QP-TM) 197
5.6. Perspectives 198
5.7. Acknowledgments 201
5.8. Bibliography 201
CHAPTER 6. LONG-WAVE INFRARED DIGITAL HOLOGRAPHY 219
Marc GEORGES
6.1. Introduction 219
6.2. Analog hologram recording in LWIR 221
6.3. Digital hologram recording in LWIR 222
6.3.1. Hardware components 222
6.3.2. Specific features of the LWIR domain 229
6.4. Typical applications of LWIR digital holography 235
6.4.1. Recording holograms of large objects in LWIR and display in visible
235
6.4.2. Reconstruction of images through smoke and flames 237
6.4.3. Large deformations of specular aspheric reflectors 240
6.4.4. Combined holography and thermography for thermomechanical analysis
and non-destructive testing 243
6.5. Conclusions: future prospects 246
6.6. Bibliography 247
CHAPTER 7. FULL FIELD HOLOGRAPHIC VIBROMETRY AT ULTIMATE LIMITS 255
Nicolas VERRIER, Michael ATLAN and Michel GROSS
7.1. Introduction 255
7.2. Heterodyne holography 257
7.2.1. Accurate phase shift and holographic detection bandwidth 260
7.2.2. Shot noise holographic detection 264
7.3. Holographic vibrometry 268
7.3.1. Optical signal scattered by a vibrating object 268
7.3.2. Selective detection of the sideband components Em: sideband
holography 270
7.3.3. Sideband holography for large amplitude of vibration 273
7.3.4. Sideband holography with strobe illumination 277
7.3.5. Sideband holography for small amplitude of vibration 280
7.4. Conclusion 290
7.5. Bibliography 290
LIST OF AUTHORS 295
INDEX 297
Passcal PICART
CHAPTER 1. BASIC FUNDAMENTALS OF DIGITAL HOLOGRAPHY 1
Pascal PICART, Michel GROSS and Pierre MARQUET
1.1. Digital holograms 2
1.1.1. Interferences between the object and reference waves 2
1.1.2. Role of the image sensor 5
1.1.3. Demodulation of digital holograms 9
1.2. Back-propagation to the object plane 16
1.2.1. Monochromatic spherical and plane waves 17
1.2.2. Propagation equation 18
1.2.3. Angular spectrum transfer function 19
1.2.4. Kirchhoff and Rayleigh-Sommerfeld formulas 21
1.2.5. Fresnel approximation and Fresnel diffraction integral 22
1.3. Numerical reconstruction of digital holograms 24
1.3.1. Discrete Fresnel transform 24
1.3.2. Reconstruction with convolution 30
1.4. Holographic setups 37
1.4.1. Fresnel holography 37
1.4.2. Fresnel holography with spatial spectrum reduction 38
1.4.3. Fourier holography 38
1.4.4. Lensless Fourier holography 39
1.4.5. Image-plane holography 40
1.4.6. Holographic microscopy 41
1.4.7. In-line Gabor holography 43
1.5. Digital holographic interferometry 45
1.5.1. Reconstruction of the phase of the object 45
1.5.2. Optical phase variations and the sensitivity vector 46
1.5.3. Phase difference method 47
1.5.4. Phase unwrapping 49
1.6. Quantitative phase tomography 49
1.7. Conclusion 53
1.8. Bibliography 54
CHAPTER 2. DIGITAL IN-LINE HOLOGRAPHY APPLIED TO FLUID FLOWS 67
Sébastien COËTMELLEC, Denis LEBRUN and Marc BRUNEL
2.1. Examples of measurements in flows 68
2.1.1. Increasing NA with a divergent wave 68
2.1.2. Choice of the magnification 70
2.1.3. 3D velocity measurements in a turbulent boundary layer 70
2.1.4. Cavitation bubbles measurements 77
2.2. The fractional-order Fourier transform 81
2.3. Digital in-line holography with a sub-picosecond laser beam 82
2.4. Spatially partially coherent source applied to the digital in-line
holography 89
2.5. Digital in-line holography for phase objects metrology 94
2.5.1. In-line holograms of transparent phase objects 94
2.5.2. Reconstruction 97
2.5.3. Experimental results 98
2.6. Bibliography 101
CHAPTER 3. DIGITAL COLOR HOLOGRAPHY FOR ANALYZING UNSTEADY WAKE FLOWS 107
JEAN MICHEL DESSE AND PASCAL PICART
3.1. Advantage of using multiple wavelengths 109
3.2. Analysis of subsonic wake flows 112
3.2.1. Description of the digital color holographic interferometer 112
3.2.2. Results obtained with subsonic wake flows 114
3.2.3. Comparison between holographic plate and digital holograms 116
3.3. Analysis of a supersonic jet with high-density gradients 117
3.3.1. Definition of an optical setup 118
3.3.2. Results obtained with a supersonic jet 122
3.4. Analysis of a hydrogen jet in a hypersonic flow 125
3.4.1. Experimental setup 126
3.4.2. Experimental results 128
3.4.3. Comparisons with numerical simulations 130
3.5. Conclusion 132
3.6. Acknowledgment 133
3.7. Bibliography 134
CHAPTER 4. AUTOMATION OF DIGITAL HOLOGRAPHIC DETECTION PROCEDURES FOR LIFE
SCIENCES APPLICATIONS 137
Ahmed EL MALLAHI, Christophe MINETTI and Frank DUBOIS
4.1. Introduction 137
4.2. Experimental protocol 139
4.2.1. Optical setup 139
4.2.2. Dynamic monitoring 140
4.3. General tools 140
4.3.1. Extraction of the full interferometric information 140
4.3.2. Compensation of the phase 141
4.3.3. Border processing 143
4.3.4. Best focus determination 144
4.4. Automated 3D detection 145
4.4.1. Introduction 145
4.4.2. Description of the testing samples 146
4.4.3. In-plane detection 147
4.4.4. In-depth detection 158
4.4.5. Discussion 160
4.5. Application 162
4.6. Conclusions 164
4.7. Bibliography 165
CHAPTER 5. QUANTITATIVE PHASE-DIGITAL HOLOGRAPHIC MICROSCOPY: A NEW
MODALITY FOR LIVE CELL IMAGING 169
Pierre MARQUET, Benjamin RAPPAZ and Nicolas PAVILLON
5.1. Introduction 170
5.2. Cell imaging with quantitative phase DHM 172
5.2.1. The origin and content of the quantitative phase signal 172
5.2.2. Cell counting and classification analysis 174
5.2.3. Exploration of cell movements and dynamics 175
5.2.4. Dry mass, cell growth and cell cycle 175
5.2.5. Cell membrane fluctuations and biomechanical properties 176
5.2.6. Dynamics of absolute cell volume and transmembrane water movements
177
5.3. High-content phenotypic screening based on QP-DHM 179
5.4. Multimodal QP-DHM 182
5.4.1. Multimodal fluorescence QP-DHM 182
5.4.2. Multimodal Raman-QP-DHM 183
5.4.3. Multimodal electrophysiology QP-DHM 186
5.5. Resolving neuronal network activity and visualizing spine dynamics 190
5.5.1. Background 190
5.5.2. Imaging neuronal activity by measuring transmembrane water movements
with QP-DHM 193
5.5.3. 3D Visualization of dendritic spine dynamics with quantitative phase
tomographic microscopy (QP-TM) 197
5.6. Perspectives 198
5.7. Acknowledgments 201
5.8. Bibliography 201
CHAPTER 6. LONG-WAVE INFRARED DIGITAL HOLOGRAPHY 219
Marc GEORGES
6.1. Introduction 219
6.2. Analog hologram recording in LWIR 221
6.3. Digital hologram recording in LWIR 222
6.3.1. Hardware components 222
6.3.2. Specific features of the LWIR domain 229
6.4. Typical applications of LWIR digital holography 235
6.4.1. Recording holograms of large objects in LWIR and display in visible
235
6.4.2. Reconstruction of images through smoke and flames 237
6.4.3. Large deformations of specular aspheric reflectors 240
6.4.4. Combined holography and thermography for thermomechanical analysis
and non-destructive testing 243
6.5. Conclusions: future prospects 246
6.6. Bibliography 247
CHAPTER 7. FULL FIELD HOLOGRAPHIC VIBROMETRY AT ULTIMATE LIMITS 255
Nicolas VERRIER, Michael ATLAN and Michel GROSS
7.1. Introduction 255
7.2. Heterodyne holography 257
7.2.1. Accurate phase shift and holographic detection bandwidth 260
7.2.2. Shot noise holographic detection 264
7.3. Holographic vibrometry 268
7.3.1. Optical signal scattered by a vibrating object 268
7.3.2. Selective detection of the sideband components Em: sideband
holography 270
7.3.3. Sideband holography for large amplitude of vibration 273
7.3.4. Sideband holography with strobe illumination 277
7.3.5. Sideband holography for small amplitude of vibration 280
7.4. Conclusion 290
7.5. Bibliography 290
LIST OF AUTHORS 295
INDEX 297