Next Generation Sequencing in Cancer Research (eBook, PDF)
Volume 1: Decoding the Cancer Genome
181,89 €
inkl. MwSt.
Sofort per Download lieferbar
Next Generation Sequencing in Cancer Research (eBook, PDF)
Volume 1: Decoding the Cancer Genome
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This volume provides an interdisciplinary perspective of applying Next Generation Sequencing (NGS) technology to cancer research. It aims to systematically introduce the concept of NGS, a variety of NGS platforms and their practical implications in cancer biology.This unique and comprehensive text will integrate the unprecedented NGS technology into various cancer research projects as opposed to most books which offer a detailed description of the technology. This volume will present true experimental results with concrete data processing pipelines, discuss the bottleneck of each platform for…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 7.9MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Next Generation Sequencing in Cancer Research, Volume 2 (eBook, PDF)181,89 €
- Systems Biology in Cancer Research and Drug Discovery (eBook, PDF)149,79 €
- MicroRNAs in Cancer Translational Research (eBook, PDF)213,99 €
- Impact of Genetic Targets on Cancer Therapy (eBook, PDF)213,99 €
- Spotlight on Familial and Hereditary Gastric Cancer (eBook, PDF)149,79 €
- Telomere Territory and Cancer (eBook, PDF)149,79 €
- Jose RussoTechniques and Methodological Approaches in Breast Cancer Research (eBook, PDF)149,79 €
-
-
-
This volume provides an interdisciplinary perspective of applying Next Generation Sequencing (NGS) technology to cancer research. It aims to systematically introduce the concept of NGS, a variety of NGS platforms and their practical implications in cancer biology.This unique and comprehensive text will integrate the unprecedented NGS technology into various cancer research projects as opposed to most books which offer a detailed description of the technology. This volume will present true experimental results with concrete data processing pipelines, discuss the bottleneck of each platform for real project in cancer research. In additional, single cancer cell sequencing as the proof of concept will be introduced in this book, along with cutting-edge information provided will help the intended audience to develop a comprehensive understanding of the NGS technology and practical whole genome sequencing data analysis and rapidly translate into their own research, specifically in the field of cancer biology.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Erscheinungstermin: 4. August 2013
- Englisch
- ISBN-13: 9781461476450
- Artikelnr.: 43787725
- Verlag: Springer New York
- Erscheinungstermin: 4. August 2013
- Englisch
- ISBN-13: 9781461476450
- Artikelnr.: 43787725
Introduction: next generation sequencing technology and cancer research.- The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ unannotated RNA.- Total RNA-seq of breast cancer in hypoxia.- Altered antisense-to-sense transcript ratios in breast cancer.- Identification of piRNAs in Hela cells by massive parallel sequencing.- Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia.- Whole-Exome Sequencing Identifies FAM20A Mutations as a Cause of Amelogenesis Imperfecta and Gingival Hyperplasia Syndrome.- Whole-exome sequencing in CIC and IDH1/2 contributing to human oligodendroglioma.- Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing.- Tumour evolution inferred by single-cell sequencing.- Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq.- Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNASeq analysis.- Whole genome DNA methylation analysis based on high throughput sequencing technology.- Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors.- High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq.- MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action.- Genome-wide identification of polycomb-associated RNAs by RIP-seq.- Single-molecule sequencing: sequence methods to enable accurate quantisation.- Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells.- Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA.- The genome information process for cancer research: the challenge and perspective.- Index.
Introduction: next generation sequencing technology and cancer research.- The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' unannotated RNA.- Total RNA-seq of breast cancer in hypoxia.- Altered antisense-to-sense transcript ratios in breast cancer.- Identification of piRNAs in Hela cells by massive parallel sequencing.- Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia.- Whole-Exome Sequencing Identifies FAM20A Mutations as a Cause of Amelogenesis Imperfecta and Gingival Hyperplasia Syndrome.- Whole-exome sequencing in CIC and IDH1/2 contributing to human oligodendroglioma.- Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing.- Tumour evolution inferred by single-cell sequencing.- Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq.- Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNASeq analysis.- Whole genome DNA methylation analysis based on high throughput sequencing technology.- Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors.- High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq.- MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action.- Genome-wide identification of polycomb-associated RNAs by RIP-seq.- Single-molecule sequencing: sequence methods to enable accurate quantisation.- Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells.- Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA.- The genome information process for cancer research: the challenge and perspective.- Index.
Introduction: next generation sequencing technology and cancer research.- The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ unannotated RNA.- Total RNA-seq of breast cancer in hypoxia.- Altered antisense-to-sense transcript ratios in breast cancer.- Identification of piRNAs in Hela cells by massive parallel sequencing.- Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia.- Whole-Exome Sequencing Identifies FAM20A Mutations as a Cause of Amelogenesis Imperfecta and Gingival Hyperplasia Syndrome.- Whole-exome sequencing in CIC and IDH1/2 contributing to human oligodendroglioma.- Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing.- Tumour evolution inferred by single-cell sequencing.- Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq.- Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNASeq analysis.- Whole genome DNA methylation analysis based on high throughput sequencing technology.- Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors.- High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq.- MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action.- Genome-wide identification of polycomb-associated RNAs by RIP-seq.- Single-molecule sequencing: sequence methods to enable accurate quantisation.- Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells.- Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA.- The genome information process for cancer research: the challenge and perspective.- Index.
Introduction: next generation sequencing technology and cancer research.- The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' unannotated RNA.- Total RNA-seq of breast cancer in hypoxia.- Altered antisense-to-sense transcript ratios in breast cancer.- Identification of piRNAs in Hela cells by massive parallel sequencing.- Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia.- Whole-Exome Sequencing Identifies FAM20A Mutations as a Cause of Amelogenesis Imperfecta and Gingival Hyperplasia Syndrome.- Whole-exome sequencing in CIC and IDH1/2 contributing to human oligodendroglioma.- Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing.- Tumour evolution inferred by single-cell sequencing.- Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq.- Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNASeq analysis.- Whole genome DNA methylation analysis based on high throughput sequencing technology.- Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors.- High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq.- MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action.- Genome-wide identification of polycomb-associated RNAs by RIP-seq.- Single-molecule sequencing: sequence methods to enable accurate quantisation.- Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells.- Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA.- The genome information process for cancer research: the challenge and perspective.- Index.