Noise Coupling in System-on-Chip (eBook, PDF)
Redaktion: Noulis, Thomas
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Noise Coupling in System-on-Chip (eBook, PDF)
Redaktion: Noulis, Thomas
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book presents information written by international experts in the field of Systems on Chip (SoC) Coupling, including substrate and interconnect magnetic crosstalk, 2D and 3D circuits noise coupling, and TSV and simulation. It enables the reader to analyze crosstalk noise propagating through the parasitics interconnect and package and the PCB.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 15.55MB
Andere Kunden interessierten sich auch für
- Noise Coupling in System-on-Chip (eBook, ePUB)52,95 €
- Sudhanshu MaheshwariAnalog Circuit Design using Current-Mode Techniques (eBook, PDF)52,95 €
- Opto-VLSI Devices and Circuits for Biomedical and Healthcare Applications (eBook, PDF)52,95 €
- Jo VerhaevertFundamental Electrical and Electronic Principles (eBook, PDF)48,95 €
- Tunneling Field Effect Transistors (eBook, PDF)131,95 €
- Salvador Alcántara CanoPID Tuning (eBook, PDF)48,95 €
- Microelectronics and Signal Processing (eBook, PDF)52,95 €
-
-
-
The book presents information written by international experts in the field of Systems on Chip (SoC) Coupling, including substrate and interconnect magnetic crosstalk, 2D and 3D circuits noise coupling, and TSV and simulation. It enables the reader to analyze crosstalk noise propagating through the parasitics interconnect and package and the PCB.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 518
- Erscheinungstermin: 9. Januar 2018
- Englisch
- ISBN-13: 9781138031616
- Artikelnr.: 50916422
- Verlag: Taylor & Francis
- Seitenzahl: 518
- Erscheinungstermin: 9. Januar 2018
- Englisch
- ISBN-13: 9781138031616
- Artikelnr.: 50916422
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Thomas Noulis is an Assistant Professor in the Physics Department at Aristotle University, in the Electronics Laboratory. From 2012 to 2015, he worked with INTEL Corp., as a Staff RFMS Engineer, in the Mobile & Communications Group in Munich-Germany, where he specialized on 14nm & 28nm design, modeling/characterization, crosstalk and in SoC product active area minimization & migration. Before joining INTEL, from May 2008 to March 2012, Dr. Noulis was with HELIC Inc, initially as Analog/RF IC designer and then as an R&D Engineer specializing in substrate coupling, signal and noise integrity and analog/RFIC design. Thomas Noulis holds a B.Sc. Degree in Physics (2003), a M.Sc. Degree in Electronics Engineering (2005), and a Ph.D in the "Design of signal processing integrated circuits" (2009) from Aristotle Univ. of Thessaloniki, Greece and in collaboration with LAAS (Toulouse-France). From 2004 to 2009, he participated as a principal researcher in multiple European and National research projects related to Space Application and Nuclear Spectroscopy IC design; simultaneously, from 2004 to 2010, he also collaborated as a Visiting/Adjunct Professor with Universities and Technical Institutes. Dr. Noulis is the main author of more than 40 publications, in journals, conferences and scientific book chapters. He holds one French and World patent. His work received more than 50 citations. He is an active reviewer of multiple international journals and has given multiple invited presentations in European Research Institutes on crosstalk and Rad-IC design. Dr. Noulis has been awarded for his research activity by conferences and research organizations and can be reached at t.noulis@gmail.com.
System on Chip Substrate Crosstalk Modeling and Simulation Flow. Substrate
Induced Signal Integrity in 2D and 3D Ics. TSV-to-Substrate Noise Coupling
in 3-D Systems. 3-D Interconnects with IC's Stack Global Electrical Context
Consideration. Modeling of On-Chip Power Distribution Network. Printed
Circuit Board Integration of SoC Packages and Signal Integrity Issues at
Board Level. Modeling and Characterization of TSV-Induced Noise Coupling.
Layout strategies for substrate crosstalk reduction in low cost CMOS
processes. Wireless Communications System on Chip substrate noise real time
sensing. System-on-Chip Substrate Crosstalk Measurement Techniques. IC
Floorplanning Based on Thermal Interactions. A Unified Method for
Calculating Parasitic Capacitive and Resistive Coupling in VLSI Circuits.
Coupling through substrate for millimeter wave frequencies. Paradigm Shift
of On-Chip Interconnects from Electrical to Optical. Electro-Thermal
Considerations dedicated to 3-D Integration; Noise Coupling.
Induced Signal Integrity in 2D and 3D Ics. TSV-to-Substrate Noise Coupling
in 3-D Systems. 3-D Interconnects with IC's Stack Global Electrical Context
Consideration. Modeling of On-Chip Power Distribution Network. Printed
Circuit Board Integration of SoC Packages and Signal Integrity Issues at
Board Level. Modeling and Characterization of TSV-Induced Noise Coupling.
Layout strategies for substrate crosstalk reduction in low cost CMOS
processes. Wireless Communications System on Chip substrate noise real time
sensing. System-on-Chip Substrate Crosstalk Measurement Techniques. IC
Floorplanning Based on Thermal Interactions. A Unified Method for
Calculating Parasitic Capacitive and Resistive Coupling in VLSI Circuits.
Coupling through substrate for millimeter wave frequencies. Paradigm Shift
of On-Chip Interconnects from Electrical to Optical. Electro-Thermal
Considerations dedicated to 3-D Integration; Noise Coupling.
System on Chip Substrate Crosstalk Modeling and Simulation Flow. Substrate
Induced Signal Integrity in 2D and 3D Ics. TSV-to-Substrate Noise Coupling
in 3-D Systems. 3-D Interconnects with IC's Stack Global Electrical Context
Consideration. Modeling of On-Chip Power Distribution Network. Printed
Circuit Board Integration of SoC Packages and Signal Integrity Issues at
Board Level. Modeling and Characterization of TSV-Induced Noise Coupling.
Layout strategies for substrate crosstalk reduction in low cost CMOS
processes. Wireless Communications System on Chip substrate noise real time
sensing. System-on-Chip Substrate Crosstalk Measurement Techniques. IC
Floorplanning Based on Thermal Interactions. A Unified Method for
Calculating Parasitic Capacitive and Resistive Coupling in VLSI Circuits.
Coupling through substrate for millimeter wave frequencies. Paradigm Shift
of On-Chip Interconnects from Electrical to Optical. Electro-Thermal
Considerations dedicated to 3-D Integration; Noise Coupling.
Induced Signal Integrity in 2D and 3D Ics. TSV-to-Substrate Noise Coupling
in 3-D Systems. 3-D Interconnects with IC's Stack Global Electrical Context
Consideration. Modeling of On-Chip Power Distribution Network. Printed
Circuit Board Integration of SoC Packages and Signal Integrity Issues at
Board Level. Modeling and Characterization of TSV-Induced Noise Coupling.
Layout strategies for substrate crosstalk reduction in low cost CMOS
processes. Wireless Communications System on Chip substrate noise real time
sensing. System-on-Chip Substrate Crosstalk Measurement Techniques. IC
Floorplanning Based on Thermal Interactions. A Unified Method for
Calculating Parasitic Capacitive and Resistive Coupling in VLSI Circuits.
Coupling through substrate for millimeter wave frequencies. Paradigm Shift
of On-Chip Interconnects from Electrical to Optical. Electro-Thermal
Considerations dedicated to 3-D Integration; Noise Coupling.