96,29 €
inkl. MwSt.
Sofort per Download lieferbar
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book shows readers how to design semiconductor devices using the most common and lowest cost logic CMOS processes. Readers will benefit from the author’s extensive, industrial experience and the practical approach he describes for designing efficiently semiconductor devices that typically have to be implemented using specialized processes that are expensive, time-consuming, and low-yield. The author presents an integrated picture of semiconductor device physics and manufacturing techniques, as well as numerous practical examples of device designs that are tried and true.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.13MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Viktor SverdlovStrain-Induced Effects in Advanced MOSFETs (eBook, PDF)149,79 €
- Tunneling Field Effect Transistor Technology (eBook, PDF)96,29 €
- Jacek KorecLow Voltage Power MOSFETs (eBook, PDF)53,49 €
- Stéphane BadelDesign Automation for Differential MOS Current-Mode Logic Circuits (eBook, PDF)139,09 €
- Ultra-Low Voltage Nano-Scale Memories (eBook, PDF)106,99 €
- Pierre-Emmanuel GaillardonDisruptive Logic Architectures and Technologies (eBook, PDF)96,29 €
- Ricardo MartinsAnalog Integrated Circuit Design Automation (eBook, PDF)96,29 €
-
-
-
This book shows readers how to design semiconductor devices using the most common and lowest cost logic CMOS processes. Readers will benefit from the author’s extensive, industrial experience and the practical approach he describes for designing efficiently semiconductor devices that typically have to be implemented using specialized processes that are expensive, time-consuming, and low-yield. The author presents an integrated picture of semiconductor device physics and manufacturing techniques, as well as numerous practical examples of device designs that are tried and true.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Erscheinungstermin: 29. März 2017
- Englisch
- ISBN-13: 9783319483399
- Artikelnr.: 53033646
- Verlag: Springer International Publishing
- Erscheinungstermin: 29. März 2017
- Englisch
- ISBN-13: 9783319483399
- Artikelnr.: 53033646
Yanjun Ma is currently a Director of Portfolio Management and Principal Hardware Architect at the Invention Development Fund at Intellectual Ventures in Bellevue, WA. Prior to his current positions, Yanjun was a principal engineer and a director of Technology Development and Production Engineering at Impinj, Inc. in Seattle, Washington. He also had held senior research and engineering positions at Lattice Semiconductors, Sharp Labs of America as well as research positions at AT&T Bell Labs, Brookhaven National Lab, and the University of Washington.
He started his research career studying high temperature superconductors, quasicrystals, and x-ray physics which led to the discovery of a momentum conservation law in x-ray fluorescence. His more recent interests include semiconductor process and device physics, non-volatile memories, RFID, and low power computing architecture.
Yanjun has over 80 publications in such journals as IEEE Electron Device Letter, Trans. On ElectronDevices, Applied Physics Letter, and Physical Review Letter. He also has over 35 issued US patents and a number of international patents and patent applications, with some very highly cited patents, including a few of the earliest patents on high k gate dielectrics.
Edwin C. Kan is a Professor at the School of Electrical and Computer Engineering, Cornell University, Ithaca, NY. Before joining Cornell, he had worked at Dawn Technologies as a Principal CAD Engineer and Stanford University as a Research Associate.
His main research areas include CMOS technologies, semiconductor device physics, flash memory, CMOS biosensors, RFID, RF indoor locating and tracking, and numerical methods for PDE and ODE.
He has over 80 journal publications,160 conference papers and three book chapters. He received the Presidential Early Career Award for Scientists and Engineer (PECASE) in October 2000 from the White House. He also received several teachingawards from Cornell Engineering College for his CMOS and MEMS courses.
He started his research career studying high temperature superconductors, quasicrystals, and x-ray physics which led to the discovery of a momentum conservation law in x-ray fluorescence. His more recent interests include semiconductor process and device physics, non-volatile memories, RFID, and low power computing architecture.
Yanjun has over 80 publications in such journals as IEEE Electron Device Letter, Trans. On ElectronDevices, Applied Physics Letter, and Physical Review Letter. He also has over 35 issued US patents and a number of international patents and patent applications, with some very highly cited patents, including a few of the earliest patents on high k gate dielectrics.
Edwin C. Kan is a Professor at the School of Electrical and Computer Engineering, Cornell University, Ithaca, NY. Before joining Cornell, he had worked at Dawn Technologies as a Principal CAD Engineer and Stanford University as a Research Associate.
His main research areas include CMOS technologies, semiconductor device physics, flash memory, CMOS biosensors, RFID, RF indoor locating and tracking, and numerical methods for PDE and ODE.
He has over 80 journal publications,160 conference papers and three book chapters. He received the Presidential Early Career Award for Scientists and Engineer (PECASE) in October 2000 from the White House. He also received several teachingawards from Cornell Engineering College for his CMOS and MEMS courses.
Part 1. Basics.- 1. Introduction.- 2. Overview of Logic CMOS Devices.- 3. Overview of Logic CMOS Process.- Part 2. Non-Logic Device Design in Logic Processes.- 4. Non-logic MOSFETs in Logic CMOS Process.- 5. Floating Gate Devices in Logic CMOS Process.- 6. Bipolar Transistors in Logic CMOS Process.- 7. Diodes in Logic CMOS Process.- 8. Logic Nonvolatile Memory.- 9. One Time Programmable Memories in Logic Process.- 10. Multiple Times Programmable Logic Nonvolatile Memory.- 11. Non-Data Storage Applications.- 12. CMOS Biosensors.- 13. Waveform Shaping Structures and Transmission Lines on CMOS.- 14. Conclusions and Outlook.
Part 1. Basics.- 1. Introduction.- 2. Overview of Logic CMOS Devices.- 3. Overview of Logic CMOS Process.- Part 2. Non-Logic Device Design in Logic Processes.- 4. Non-logic MOSFETs in Logic CMOS Process.- 5. Floating Gate Devices in Logic CMOS Process.- 6. Bipolar Transistors in Logic CMOS Process.- 7. Diodes in Logic CMOS Process.- 8. Logic Nonvolatile Memory.- 9. One Time Programmable Memories in Logic Process.- 10. Multiple Times Programmable Logic Nonvolatile Memory.- 11. Non-Data Storage Applications.- 12. CMOS Biosensors.- 13. Waveform Shaping Structures and Transmission Lines on CMOS.- 14. Conclusions and Outlook.
Part 1. Basics.- 1. Introduction.- 2. Overview of Logic CMOS Devices.- 3. Overview of Logic CMOS Process.- Part 2. Non-Logic Device Design in Logic Processes.- 4. Non-logic MOSFETs in Logic CMOS Process.- 5. Floating Gate Devices in Logic CMOS Process.- 6. Bipolar Transistors in Logic CMOS Process.- 7. Diodes in Logic CMOS Process.- 8. Logic Nonvolatile Memory.- 9. One Time Programmable Memories in Logic Process.- 10. Multiple Times Programmable Logic Nonvolatile Memory.- 11. Non-Data Storage Applications.- 12. CMOS Biosensors.- 13. Waveform Shaping Structures and Transmission Lines on CMOS.- 14. Conclusions and Outlook.
Part 1. Basics.- 1. Introduction.- 2. Overview of Logic CMOS Devices.- 3. Overview of Logic CMOS Process.- Part 2. Non-Logic Device Design in Logic Processes.- 4. Non-logic MOSFETs in Logic CMOS Process.- 5. Floating Gate Devices in Logic CMOS Process.- 6. Bipolar Transistors in Logic CMOS Process.- 7. Diodes in Logic CMOS Process.- 8. Logic Nonvolatile Memory.- 9. One Time Programmable Memories in Logic Process.- 10. Multiple Times Programmable Logic Nonvolatile Memory.- 11. Non-Data Storage Applications.- 12. CMOS Biosensors.- 13. Waveform Shaping Structures and Transmission Lines on CMOS.- 14. Conclusions and Outlook.