Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework…mehr
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.
Dr. W.D. van Suijlekom (Assistant Professor/VIDI-Laureate) IMAPP - Mathematics Faculty of Science, Radboud University Nijmegen The Netherlands Expertise: Mathematical physics; noncommutative geometry, gauge field theories and particle physics.
Inhaltsangabe
Preface.- Introduction.- Part 1. Noncommutative geometric spaces.- Finite noncommutative spaces.- Finite real noncommutative spaces.- Noncommutative Riemannian spin manifolds.- The local index formula in noncommutative geometry.- Part 2. Noncommutative geometry and gauge theories.- Gauge theories from noncommutative manifolds.- Spectral invariants.- Almost-commutative manifolds and gauge theories.- The noncommutative geometry of electrodynamics.- The noncommutative geometry of Yang-Mills fields.- The noncommutative geometry of the Standard Model.- Phenomenology of the noncommutative Standard Model.- Bibliography.
Preface.- Introduction.- Part 1. Noncommutative geometric spaces.- Finite noncommutative spaces.- Finite real noncommutative spaces.- Noncommutative Riemannian spin manifolds.- The local index formula in noncommutative geometry.- Part 2. Noncommutative geometry and gauge theories.- Gauge theories from noncommutative manifolds.- Spectral invariants.- Almost-commutative manifolds and gauge theories.- The noncommutative geometry of electrodynamics.- The noncommutative geometry of Yang-Mills fields.- The noncommutative geometry of the Standard Model.- Phenomenology of the noncommutative Standard Model.- Bibliography.
Preface.- Introduction.- Part 1. Noncommutative geometric spaces.- Finite noncommutative spaces.- Finite real noncommutative spaces.- Noncommutative Riemannian spin manifolds.- The local index formula in noncommutative geometry.- Part 2. Noncommutative geometry and gauge theories.- Gauge theories from noncommutative manifolds.- Spectral invariants.- Almost-commutative manifolds and gauge theories.- The noncommutative geometry of electrodynamics.- The noncommutative geometry of Yang-Mills fields.- The noncommutative geometry of the Standard Model.- Phenomenology of the noncommutative Standard Model.- Bibliography.
Preface.- Introduction.- Part 1. Noncommutative geometric spaces.- Finite noncommutative spaces.- Finite real noncommutative spaces.- Noncommutative Riemannian spin manifolds.- The local index formula in noncommutative geometry.- Part 2. Noncommutative geometry and gauge theories.- Gauge theories from noncommutative manifolds.- Spectral invariants.- Almost-commutative manifolds and gauge theories.- The noncommutative geometry of electrodynamics.- The noncommutative geometry of Yang-Mills fields.- The noncommutative geometry of the Standard Model.- Phenomenology of the noncommutative Standard Model.- Bibliography.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu