Huishi Li
Noncommutative Polynomial Algebras of Solvable Type and Their Modules (eBook, ePUB)
Basic Constructive-Computational Theory and Methods
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Huishi Li
Noncommutative Polynomial Algebras of Solvable Type and Their Modules (eBook, ePUB)
Basic Constructive-Computational Theory and Methods
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This is the ¿rst book to systematically introduce the basic constructive-computational theory and methods developed for investigating solvable polynomial algebras and their modules. This book is perfectly suited to researchers and postgrads researching noncommutative computational algebra.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 0.77MB
Andere Kunden interessierten sich auch für
- Huishi LiNoncommutative Polynomial Algebras of Solvable Type and Their Modules (eBook, PDF)52,95 €
- Hopf Algebras in Noncommutative Geometry and Physics (eBook, ePUB)291,95 €
- Igor V. NikolaevNoncommutative Geometry (eBook, ePUB)76,95 €
- Nonlinear Systems and Their Remarkable Mathematical Structures (eBook, ePUB)50,95 €
- Eivind EriksenNoncommutative Deformation Theory (eBook, ePUB)52,95 €
- Zeraoulia ElhadjDynamical Systems (eBook, ePUB)48,95 €
- Syed Afsar AbbasGroup Theory in Particle, Nuclear, and Hadron Physics (eBook, ePUB)192,95 €
-
-
-
This is the ¿rst book to systematically introduce the basic constructive-computational theory and methods developed for investigating solvable polynomial algebras and their modules. This book is perfectly suited to researchers and postgrads researching noncommutative computational algebra.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 230
- Erscheinungstermin: 7. November 2021
- Englisch
- ISBN-13: 9781000471120
- Artikelnr.: 62583960
- Verlag: Taylor & Francis
- Seitenzahl: 230
- Erscheinungstermin: 7. November 2021
- Englisch
- ISBN-13: 9781000471120
- Artikelnr.: 62583960
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Huishi Li is an emeritus Professor at the Hainan University (China). He received his PhD degree from the University of Antwerp (Belgium) under the supervision of Professor, Doctor Fred Van Oystaeyen in 1990. His research interests include noncommutative rings and algebras, ltered and graded rings, noncommutative Gröbner basis theory and applications to noncommutative algebras. He has authored or co-authored six research books (five of them are written in English and one of them is written in Chinese). Before working at the Hainan University (China), he worked at the Shaanxi Normal Universty (China), the Bilkent University (Turkey), and the Jiaying University (China) respectively. He was also a visiting scholar at the Bielefeld University (Germany), the Antwerp University (Belgium), and the University of Reims (France) respectively. After retiring from the Hainan University, he worked at the Kashgar University (China) as a volunteer teacher of mathematics for one year, and he is now a volunteer teacher of mathematics at the Xinjiang Institute of Technology (China).
1. Solvable Polynomial Algebras. 1.1. Definition, Examples, Basic
Properties. 1.2. A Constructive Characterization. 1.3. The Solvable
Polynomial Algebras H(A). 1.4. Gröbner Bases of Left Ideals. 1.5. Finite
Gröbner Bases ¿ The Noetherianess. 1.6. Elimination in Left Ideals. 2.
Gröbner Basis Theory of Free Modules. 2.1. Monomial Orderings on Free
Modules. 2.2. Gröbner Bases of Submodules. 2.3. The Noncommutative
Buchberger Algorithm. 2.4. Elimination in Submodules. 2.5. Application to
Module Homomorphisms. 3. Computation of Finite Free Resolutions and
Projective Dimension. 3.1. Computation of Syzygies. 3.2. Computation of
Finite Free Resolutions. 3.3. Global Dimension and Stability. 3.4.
Computation of p.dimAM. 4. Computation of Minimal Finite Graded Free
Resolutions. 4.1. N-graded Solvable Polynomial Algebras of (B; d( ))-type.
4.2. N-Graded Free Modules. 4.3. Computation of Minimal Homogeneous
Generating Sets. 5. Computation of Minimal Finite Filtered Free
Resolutions. 5.1. N-Filtered Solvable Polynomial Algebras of (B; d(
))-Type. 5.2. N-Filtered Free Modules. 5.3. Filtered-Graded Transfer of
Gröbner Bases for Modules. 5.4. F-Bases and Standard Bases with Respect to
Good Filtration. 5.5. Computation of Minimal F-Bases and Minimal Standard
Bases. 5.6. Minimal Filtered Free Resolutions and Their Uniqueness. 5.7.
Computation of Minimal Finite Filtered Free Resolutions. Appendix.
Properties. 1.2. A Constructive Characterization. 1.3. The Solvable
Polynomial Algebras H(A). 1.4. Gröbner Bases of Left Ideals. 1.5. Finite
Gröbner Bases ¿ The Noetherianess. 1.6. Elimination in Left Ideals. 2.
Gröbner Basis Theory of Free Modules. 2.1. Monomial Orderings on Free
Modules. 2.2. Gröbner Bases of Submodules. 2.3. The Noncommutative
Buchberger Algorithm. 2.4. Elimination in Submodules. 2.5. Application to
Module Homomorphisms. 3. Computation of Finite Free Resolutions and
Projective Dimension. 3.1. Computation of Syzygies. 3.2. Computation of
Finite Free Resolutions. 3.3. Global Dimension and Stability. 3.4.
Computation of p.dimAM. 4. Computation of Minimal Finite Graded Free
Resolutions. 4.1. N-graded Solvable Polynomial Algebras of (B; d( ))-type.
4.2. N-Graded Free Modules. 4.3. Computation of Minimal Homogeneous
Generating Sets. 5. Computation of Minimal Finite Filtered Free
Resolutions. 5.1. N-Filtered Solvable Polynomial Algebras of (B; d(
))-Type. 5.2. N-Filtered Free Modules. 5.3. Filtered-Graded Transfer of
Gröbner Bases for Modules. 5.4. F-Bases and Standard Bases with Respect to
Good Filtration. 5.5. Computation of Minimal F-Bases and Minimal Standard
Bases. 5.6. Minimal Filtered Free Resolutions and Their Uniqueness. 5.7.
Computation of Minimal Finite Filtered Free Resolutions. Appendix.
1. Solvable Polynomial Algebras. 1.1. Definition, Examples, Basic
Properties. 1.2. A Constructive Characterization. 1.3. The Solvable
Polynomial Algebras H(A). 1.4. Gröbner Bases of Left Ideals. 1.5. Finite
Gröbner Bases ¿ The Noetherianess. 1.6. Elimination in Left Ideals. 2.
Gröbner Basis Theory of Free Modules. 2.1. Monomial Orderings on Free
Modules. 2.2. Gröbner Bases of Submodules. 2.3. The Noncommutative
Buchberger Algorithm. 2.4. Elimination in Submodules. 2.5. Application to
Module Homomorphisms. 3. Computation of Finite Free Resolutions and
Projective Dimension. 3.1. Computation of Syzygies. 3.2. Computation of
Finite Free Resolutions. 3.3. Global Dimension and Stability. 3.4.
Computation of p.dimAM. 4. Computation of Minimal Finite Graded Free
Resolutions. 4.1. N-graded Solvable Polynomial Algebras of (B; d( ))-type.
4.2. N-Graded Free Modules. 4.3. Computation of Minimal Homogeneous
Generating Sets. 5. Computation of Minimal Finite Filtered Free
Resolutions. 5.1. N-Filtered Solvable Polynomial Algebras of (B; d(
))-Type. 5.2. N-Filtered Free Modules. 5.3. Filtered-Graded Transfer of
Gröbner Bases for Modules. 5.4. F-Bases and Standard Bases with Respect to
Good Filtration. 5.5. Computation of Minimal F-Bases and Minimal Standard
Bases. 5.6. Minimal Filtered Free Resolutions and Their Uniqueness. 5.7.
Computation of Minimal Finite Filtered Free Resolutions. Appendix.
Properties. 1.2. A Constructive Characterization. 1.3. The Solvable
Polynomial Algebras H(A). 1.4. Gröbner Bases of Left Ideals. 1.5. Finite
Gröbner Bases ¿ The Noetherianess. 1.6. Elimination in Left Ideals. 2.
Gröbner Basis Theory of Free Modules. 2.1. Monomial Orderings on Free
Modules. 2.2. Gröbner Bases of Submodules. 2.3. The Noncommutative
Buchberger Algorithm. 2.4. Elimination in Submodules. 2.5. Application to
Module Homomorphisms. 3. Computation of Finite Free Resolutions and
Projective Dimension. 3.1. Computation of Syzygies. 3.2. Computation of
Finite Free Resolutions. 3.3. Global Dimension and Stability. 3.4.
Computation of p.dimAM. 4. Computation of Minimal Finite Graded Free
Resolutions. 4.1. N-graded Solvable Polynomial Algebras of (B; d( ))-type.
4.2. N-Graded Free Modules. 4.3. Computation of Minimal Homogeneous
Generating Sets. 5. Computation of Minimal Finite Filtered Free
Resolutions. 5.1. N-Filtered Solvable Polynomial Algebras of (B; d(
))-Type. 5.2. N-Filtered Free Modules. 5.3. Filtered-Graded Transfer of
Gröbner Bases for Modules. 5.4. F-Bases and Standard Bases with Respect to
Good Filtration. 5.5. Computation of Minimal F-Bases and Minimal Standard
Bases. 5.6. Minimal Filtered Free Resolutions and Their Uniqueness. 5.7.
Computation of Minimal Finite Filtered Free Resolutions. Appendix.