Alle Infos zum eBook verschenken
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides researchers and engineers in the imaging field with the skills they need to effectively deal with nonlinear inverse problems associated with different imaging modalities, including impedance imaging, optical tomography, elastography, and electrical source imaging. Focusing on numerically implementable methods, the book bridges the gap between theory and applications, helping readers tackle problems in applied mathematics and engineering. Complete, self-contained coverage includes basic concepts, models, computational methods, numerical simulations, examples, and case…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 16.45MB
- Caner OzdemirInverse Synthetic Aperture Radar Imaging With MATLAB Algorithms (eBook, ePUB)119,99 €
- Roger L. Easton Jr.Fourier Methods in Imaging (eBook, ePUB)138,99 €
- Jin Keun SeoNonlinear Inverse Problems in Imaging (eBook, PDF)91,99 €
- Multi-dimensional Imaging (eBook, ePUB)95,99 €
- Anatoly LegtchenkoMagnetic Resonance Imaging for Groundwater (eBook, ePUB)139,99 €
- Stephen TouVisualization of Fields and Applications in Engineering (eBook, ePUB)103,99 €
- Mohamed Daoudi3D Face Modeling, Analysis and Recognition (eBook, ePUB)91,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 376
- Erscheinungstermin: 16. November 2012
- Englisch
- ISBN-13: 9781118478158
- Artikelnr.: 37337583
- Verlag: John Wiley & Sons
- Seitenzahl: 376
- Erscheinungstermin: 16. November 2012
- Englisch
- ISBN-13: 9781118478158
- Artikelnr.: 37337583
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
on's Approach 216 7.5.2 Uniqueness and Three-Dimensional Reconstruction: Infinite Measurements 218 7.5.3 Nachmann's D-bar Method in Two Dimensions 221 7.6 Back-Projection Algorithm 223 7.7 Sensitivity and Sensitivity Matrix 226 7.7.1 Perturbation and Sensitivity 226 7.7.2 Sensitivity Matrix 227 7.7.3 Linearization 227 7.7.4 Quality of Sensitivity Matrix 229 7.8 Inverse Problem of EIT 229 7.8.1 Inverse Problem of RC Circuit 229 7.8.2 Formulation of EIT Inverse Problem 231 7.8.3 Ill-Posedness of EIT Inverse Problem 231 7.9 Static Imaging 232 7.9.1 Iterative Data Fitting Method 232 7.9.2 Static Imaging using Four-Channel EIT System 233 7.9.3 Regularization 237 7.9.4 Technical Difficulty of Static Imaging 237 7.10 Time-Difference Imaging 239 7.10.1 Data Sets for Time-Difference Imaging 239 7.10.2 Equivalent Homogeneous Admittivity 240 7.10.3 Linear Time-Difference Algorithm using Sensitivity Matrix 241 7.10.4 Interpretation of Time-Difference Image 242 7.11 Frequency-Difference Imaging 243 7.11.1 Data Sets for Frequency-Difference Imaging 243 7.11.2 Simple Difference Ft,
2
Ft,
1 244 7.11.3 Weighted Difference Ft,
2
Ft,
1 244 7.11.4 Linear Frequency-Difference Algorithm using Sensitivity Matrix 245 7.11.5 Interpretation of Frequency-Difference Image 246 References 247 8 Anomaly Estimation and Layer Potential Techniques 251 8.1 Harmonic Analysis and Potential Theory 252 8.1.1 Layer Potentials and Boundary Value Problems for Laplace Equation 252 8.1.2 Regularity for Solution of Elliptic Equation along Boundary of Inhomogeneity 259 8.2 Anomaly Estimation using EIT 266 8.2.1 Size Estimation Method 268 8.2.2 Location Search Method 274 8.3 Anomaly Estimation using Planar Probe 281 8.3.1 Mathematical Formulation 282 8.3.2 Representation Formula 287 References 290 Further Reading 291 9 Magnetic Resonance Electrical Impedance Tomography 295 9.1 Data Collection using MRI 296 9.1.1 Measurement of Bz 297 9.1.2 Noise in Measured Bz Data 299 9.1.3 Measurement of B = (Bx,By,Bz) 301 9.2 Forward Problem and Model Construction 301 9.2.1 Relation between J, Bz and
302 9.2.2 Three Key Observations 303 9.2.3 Data Bz Traces
u × ez Directional Change of
304 9.2.4 Mathematical Analysis toward MREIT Model 305 9.3 Inverse Problem Formulation using B or J 308 9.4 Inverse Problem Formulation using Bz 309 9.4.1 Model with Two Linearly Independent Currents 309 9.4.2 Uniqueness 310 9.4.3 Defected Bz Data in a Local Region 314 9.5 Image Reconstruction Algorithm 315 9.5.1 J -substitution Algorithm 315 9.5.2 Harmonic Bz Algorithm 317 9.5.3 Gradient Bz Decomposition and Variational Bz Algorithm 319 9.5.4 Local Harmonic Bz Algorithm 320 9.5.5 Sensitivity Matrix-based Algorithm 322 9.5.6 Anisotropic Conductivity Reconstruction Algorithm 323 9.5.7 Other Algorithms 324 9.6 Validation and Interpretation 325 9.6.1 Image Reconstruction Procedure using Harmonic Bz Algorithm 325 9.6.2 Conductivity Phantom Imaging 326 9.6.3 Animal Imaging 327 9.6.4 Human Imaging 330 9.7 Applications 331 References 332 10 Magnetic Resonance Elastography 335 10.1 Representation of Physical Phenomena 336 10.1.1 Overview of Hooke's Law 336 10.1.2 Strain Tensor in Lagrangian Coordinates 339 10.2 Forward Problem and Model 340 10.3 Inverse Problem in MRE 342 10.4 Reconstruction Algorithms 342 10.4.1 Reconstruction of
with the Assumption of Local Homogeneity 344 10.4.2 Reconstruction of
without the Assumption of Local Homogeneity 345 10.4.3 Anisotropic Elastic Moduli Reconstruction 349 10.5 Technical Issues in MRE 350 References 351 Further Reading 352 Index 355
on's Approach 216 7.5.2 Uniqueness and Three-Dimensional Reconstruction: Infinite Measurements 218 7.5.3 Nachmann's D-bar Method in Two Dimensions 221 7.6 Back-Projection Algorithm 223 7.7 Sensitivity and Sensitivity Matrix 226 7.7.1 Perturbation and Sensitivity 226 7.7.2 Sensitivity Matrix 227 7.7.3 Linearization 227 7.7.4 Quality of Sensitivity Matrix 229 7.8 Inverse Problem of EIT 229 7.8.1 Inverse Problem of RC Circuit 229 7.8.2 Formulation of EIT Inverse Problem 231 7.8.3 Ill-Posedness of EIT Inverse Problem 231 7.9 Static Imaging 232 7.9.1 Iterative Data Fitting Method 232 7.9.2 Static Imaging using Four-Channel EIT System 233 7.9.3 Regularization 237 7.9.4 Technical Difficulty of Static Imaging 237 7.10 Time-Difference Imaging 239 7.10.1 Data Sets for Time-Difference Imaging 239 7.10.2 Equivalent Homogeneous Admittivity 240 7.10.3 Linear Time-Difference Algorithm using Sensitivity Matrix 241 7.10.4 Interpretation of Time-Difference Image 242 7.11 Frequency-Difference Imaging 243 7.11.1 Data Sets for Frequency-Difference Imaging 243 7.11.2 Simple Difference Ft,
2
Ft,
1 244 7.11.3 Weighted Difference Ft,
2
Ft,
1 244 7.11.4 Linear Frequency-Difference Algorithm using Sensitivity Matrix 245 7.11.5 Interpretation of Frequency-Difference Image 246 References 247 8 Anomaly Estimation and Layer Potential Techniques 251 8.1 Harmonic Analysis and Potential Theory 252 8.1.1 Layer Potentials and Boundary Value Problems for Laplace Equation 252 8.1.2 Regularity for Solution of Elliptic Equation along Boundary of Inhomogeneity 259 8.2 Anomaly Estimation using EIT 266 8.2.1 Size Estimation Method 268 8.2.2 Location Search Method 274 8.3 Anomaly Estimation using Planar Probe 281 8.3.1 Mathematical Formulation 282 8.3.2 Representation Formula 287 References 290 Further Reading 291 9 Magnetic Resonance Electrical Impedance Tomography 295 9.1 Data Collection using MRI 296 9.1.1 Measurement of Bz 297 9.1.2 Noise in Measured Bz Data 299 9.1.3 Measurement of B = (Bx,By,Bz) 301 9.2 Forward Problem and Model Construction 301 9.2.1 Relation between J, Bz and
302 9.2.2 Three Key Observations 303 9.2.3 Data Bz Traces
u × ez Directional Change of
304 9.2.4 Mathematical Analysis toward MREIT Model 305 9.3 Inverse Problem Formulation using B or J 308 9.4 Inverse Problem Formulation using Bz 309 9.4.1 Model with Two Linearly Independent Currents 309 9.4.2 Uniqueness 310 9.4.3 Defected Bz Data in a Local Region 314 9.5 Image Reconstruction Algorithm 315 9.5.1 J -substitution Algorithm 315 9.5.2 Harmonic Bz Algorithm 317 9.5.3 Gradient Bz Decomposition and Variational Bz Algorithm 319 9.5.4 Local Harmonic Bz Algorithm 320 9.5.5 Sensitivity Matrix-based Algorithm 322 9.5.6 Anisotropic Conductivity Reconstruction Algorithm 323 9.5.7 Other Algorithms 324 9.6 Validation and Interpretation 325 9.6.1 Image Reconstruction Procedure using Harmonic Bz Algorithm 325 9.6.2 Conductivity Phantom Imaging 326 9.6.3 Animal Imaging 327 9.6.4 Human Imaging 330 9.7 Applications 331 References 332 10 Magnetic Resonance Elastography 335 10.1 Representation of Physical Phenomena 336 10.1.1 Overview of Hooke's Law 336 10.1.2 Strain Tensor in Lagrangian Coordinates 339 10.2 Forward Problem and Model 340 10.3 Inverse Problem in MRE 342 10.4 Reconstruction Algorithms 342 10.4.1 Reconstruction of
with the Assumption of Local Homogeneity 344 10.4.2 Reconstruction of
without the Assumption of Local Homogeneity 345 10.4.3 Anisotropic Elastic Moduli Reconstruction 349 10.5 Technical Issues in MRE 350 References 351 Further Reading 352 Index 355