This volume comprises six chapters and begins by presenting some background material, such as differential-geometric sources, sources in mathematical physics, and sources from the calculus of variations, before delving into the subject of nonlinear operators. The following chapters then discuss local analysis of a single mapping and parameter dependent perturbation phenomena before going into analysis in the large. The final chapters conclude the collection with a discussion of global theories for general nonlinear operators and critical point theory for gradient mappings.
This book will be of interest to practitioners in the fields of mathematics and physics, and to those with interest in conventional linear functional analysis and ordinary and partial differential equations.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.