17,95 €
17,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
9 °P sammeln
17,95 €
17,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
9 °P sammeln
Als Download kaufen
17,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
9 °P sammeln
Jetzt verschenken
17,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
9 °P sammeln
  • Format: PDF

In this Element, the authors consider fully discretized p-Laplacian problems (evolution, boundary value and variational problems) on graphs. The motivation of nonlocal continuum limits comes from the quest of understanding collective dynamics in large ensembles of interacting particles, which is a fundamental problem in nonlinear science, with applications ranging from biology to physics, chemistry and computer science. Using the theory of graphons, the authors give a unified treatment of all the above problems and establish the continuum limit for each of them together with non-asymptotic…mehr

  • Geräte: PC
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 10.35MB
  • FamilySharing(5)
Produktbeschreibung
In this Element, the authors consider fully discretized p-Laplacian problems (evolution, boundary value and variational problems) on graphs. The motivation of nonlocal continuum limits comes from the quest of understanding collective dynamics in large ensembles of interacting particles, which is a fundamental problem in nonlinear science, with applications ranging from biology to physics, chemistry and computer science. Using the theory of graphons, the authors give a unified treatment of all the above problems and establish the continuum limit for each of them together with non-asymptotic convergence rates. They also describe an algorithmic framework based proximal splitting to solve these discrete problems on graphs.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.