63,95 €
63,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
63,95 €
Als Download kaufen
63,95 €
inkl. MwSt.
Sofort per Download lieferbar
32 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
63,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
32 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Presents modern algebra from the ground up using numbers and symmetry. This work provides an introduction to the central algebraic notion of isomorphism. Designed for a typical one-semester undergraduate course in modern algebra, it provides an introduction to the subject by allowing students to see the ideas at work in accessible examples.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 2.83MB
Andere Kunden interessierten sich auch für
- Arthur BenjaminSecrets of Mental Math (eBook, ePUB)7,99 €
- Steven StrogatzJoy of x (eBook, ePUB)17,95 €
- The Princeton ReviewHigh School Algebra I Unlocked (eBook, ePUB)7,99 €
- P. M. CohnAlgebraic Numbers and Algebraic Functions (eBook, ePUB)51,95 €
- Yonghui WuAlgorithm Design Practice for Collegiate Programming Contests and Education (eBook, ePUB)82,95 €
- Franz Halter-KochAn Invitation To Algebraic Numbers And Algebraic Functions (eBook, ePUB)69,95 €
- Eugene SpiegelIncidence Algebras (eBook, ePUB)165,95 €
-
-
-
Presents modern algebra from the ground up using numbers and symmetry. This work provides an introduction to the central algebraic notion of isomorphism. Designed for a typical one-semester undergraduate course in modern algebra, it provides an introduction to the subject by allowing students to see the ideas at work in accessible examples.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 270
- Erscheinungstermin: 24. Juli 2020
- Englisch
- ISBN-13: 9781000153378
- Artikelnr.: 59851489
- Verlag: Taylor & Francis
- Seitenzahl: 270
- Erscheinungstermin: 24. Juli 2020
- Englisch
- ISBN-13: 9781000153378
- Artikelnr.: 59851489
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Department of Mathematical Sciences Florida Atlantic University Boca Raton, Florida. Department of Mathematical Sciences Florida Atlantic University Boca Raton, Florida.
1 New numbers
1.1 A planeful of integers, Z[i]
1.2 Circular numbers, Zn
1.3 More integers on the number line, Z [V]
1.4 Notes
2 The division algorithm
2.1 Rational integers
2.2 Norms
2.2.1 Gaussian integers
2.2.2 Z[V2]
2.3 Gaussian numbers
2.4 Q (V2)
2.5 Polynomials
2.6 Notes
3 The Euclidean algorithm
3.1 Bezout's equation
3.2 Relatively prime numbers
3.3 Gaussian integers
3.4 Notes.
4 Units
4.1 Elementary properties
4.2 Bezout's equation
4.2.1 Casting out nines
4.3 Wilson's theorem
4.4 Orders of elements: Fermat and Euler
4.5 Quadratic residues
4.6 Z[\ /2)
4.7 Notes
5 Primes
5.1 Prime numbers
5.2 Gaussian primes
5.3 Z [s /2]
5.4 Unique factorization into primes.
5.5 Zn.
5.6 Notes
6 Symmetries
6.1 Symmetries of figures in the plane
6.2 Groups
6.2.1 Permutation groups
6.2.2 Dihedral groups
6.3 The cycle structure of a permutation
6.4 Cyclic groups
6.5 The alternating groups
6.5.1 Even and odd permutations
6.5.2 The sign of a permutation
6.6 Notes
7 Matrices
7.1 Symmetries and coordinates
7.2 Two
by
two matrices
7.3 The ring of matrices
7.4 Units
7.5 Complex numbers and quaternions
7.6 Notes
8 Groups
8.1 Abstract groups
8.2 Subgroups and cosets
8.3 Isomorphism
8.4 The group of units of a finite field
8.5 Products of groups
8.6 The Euclidean groups E(l), E(2) and E(3)
8.7 Notes
9 Wallpaper patterns
9.1 One
dimensional patterns
9.2 Plane lattices
9.3 Frieze patterns
9.4 Space groups
9.5 The 17 plane groups
9.6 Notes
10 Fields
10.1 Polynomials over a field
10.2 Kronecker's construction of simple field extensions
10.2.1 A four
element field, Kron(Z2, X2 + X + 1)
10.2.2 A sixteen
element field, Kron(Z2, X4
f X + 1)
10.3 Finite fields
10.4 Notes
11 Linear algebra
11.1 Vector spaces
11.2 Matrices
11.3 Row space and echelon form
11.4 Inverses and elementary matrices
11.5 Determinants
11.6 Notes
12 Error
correcting codes
12.1 Coding for redundancy
12.2 Linear codes
12.2.1 A Hamming code
12.3 Parity
check matrices
12.4 Cyclic codes
12.5 BCH codes
12.5.1 A two
error
correcting code
12.5.2 Designer codes
12.6 CDs
12.7 Notes
13 Appendix: Induction
13.1 Formulating the n
th statement
13.2 The domino theory: iteration.
13.3 Formulating the induction statement
13.3.1 Summary of steps
13.4 Squares
13.5 Templates
13.6 Recursion
13.7 Notes
14 Appendix: The usual rules
14.1 Rings
14.2 Notes
Index.
1.1 A planeful of integers, Z[i]
1.2 Circular numbers, Zn
1.3 More integers on the number line, Z [V]
1.4 Notes
2 The division algorithm
2.1 Rational integers
2.2 Norms
2.2.1 Gaussian integers
2.2.2 Z[V2]
2.3 Gaussian numbers
2.4 Q (V2)
2.5 Polynomials
2.6 Notes
3 The Euclidean algorithm
3.1 Bezout's equation
3.2 Relatively prime numbers
3.3 Gaussian integers
3.4 Notes.
4 Units
4.1 Elementary properties
4.2 Bezout's equation
4.2.1 Casting out nines
4.3 Wilson's theorem
4.4 Orders of elements: Fermat and Euler
4.5 Quadratic residues
4.6 Z[\ /2)
4.7 Notes
5 Primes
5.1 Prime numbers
5.2 Gaussian primes
5.3 Z [s /2]
5.4 Unique factorization into primes.
5.5 Zn.
5.6 Notes
6 Symmetries
6.1 Symmetries of figures in the plane
6.2 Groups
6.2.1 Permutation groups
6.2.2 Dihedral groups
6.3 The cycle structure of a permutation
6.4 Cyclic groups
6.5 The alternating groups
6.5.1 Even and odd permutations
6.5.2 The sign of a permutation
6.6 Notes
7 Matrices
7.1 Symmetries and coordinates
7.2 Two
by
two matrices
7.3 The ring of matrices
7.4 Units
7.5 Complex numbers and quaternions
7.6 Notes
8 Groups
8.1 Abstract groups
8.2 Subgroups and cosets
8.3 Isomorphism
8.4 The group of units of a finite field
8.5 Products of groups
8.6 The Euclidean groups E(l), E(2) and E(3)
8.7 Notes
9 Wallpaper patterns
9.1 One
dimensional patterns
9.2 Plane lattices
9.3 Frieze patterns
9.4 Space groups
9.5 The 17 plane groups
9.6 Notes
10 Fields
10.1 Polynomials over a field
10.2 Kronecker's construction of simple field extensions
10.2.1 A four
element field, Kron(Z2, X2 + X + 1)
10.2.2 A sixteen
element field, Kron(Z2, X4
f X + 1)
10.3 Finite fields
10.4 Notes
11 Linear algebra
11.1 Vector spaces
11.2 Matrices
11.3 Row space and echelon form
11.4 Inverses and elementary matrices
11.5 Determinants
11.6 Notes
12 Error
correcting codes
12.1 Coding for redundancy
12.2 Linear codes
12.2.1 A Hamming code
12.3 Parity
check matrices
12.4 Cyclic codes
12.5 BCH codes
12.5.1 A two
error
correcting code
12.5.2 Designer codes
12.6 CDs
12.7 Notes
13 Appendix: Induction
13.1 Formulating the n
th statement
13.2 The domino theory: iteration.
13.3 Formulating the induction statement
13.3.1 Summary of steps
13.4 Squares
13.5 Templates
13.6 Recursion
13.7 Notes
14 Appendix: The usual rules
14.1 Rings
14.2 Notes
Index.
1 New numbers
1.1 A planeful of integers, Z[i]
1.2 Circular numbers, Zn
1.3 More integers on the number line, Z [V]
1.4 Notes
2 The division algorithm
2.1 Rational integers
2.2 Norms
2.2.1 Gaussian integers
2.2.2 Z[V2]
2.3 Gaussian numbers
2.4 Q (V2)
2.5 Polynomials
2.6 Notes
3 The Euclidean algorithm
3.1 Bezout's equation
3.2 Relatively prime numbers
3.3 Gaussian integers
3.4 Notes.
4 Units
4.1 Elementary properties
4.2 Bezout's equation
4.2.1 Casting out nines
4.3 Wilson's theorem
4.4 Orders of elements: Fermat and Euler
4.5 Quadratic residues
4.6 Z[\ /2)
4.7 Notes
5 Primes
5.1 Prime numbers
5.2 Gaussian primes
5.3 Z [s /2]
5.4 Unique factorization into primes.
5.5 Zn.
5.6 Notes
6 Symmetries
6.1 Symmetries of figures in the plane
6.2 Groups
6.2.1 Permutation groups
6.2.2 Dihedral groups
6.3 The cycle structure of a permutation
6.4 Cyclic groups
6.5 The alternating groups
6.5.1 Even and odd permutations
6.5.2 The sign of a permutation
6.6 Notes
7 Matrices
7.1 Symmetries and coordinates
7.2 Two
by
two matrices
7.3 The ring of matrices
7.4 Units
7.5 Complex numbers and quaternions
7.6 Notes
8 Groups
8.1 Abstract groups
8.2 Subgroups and cosets
8.3 Isomorphism
8.4 The group of units of a finite field
8.5 Products of groups
8.6 The Euclidean groups E(l), E(2) and E(3)
8.7 Notes
9 Wallpaper patterns
9.1 One
dimensional patterns
9.2 Plane lattices
9.3 Frieze patterns
9.4 Space groups
9.5 The 17 plane groups
9.6 Notes
10 Fields
10.1 Polynomials over a field
10.2 Kronecker's construction of simple field extensions
10.2.1 A four
element field, Kron(Z2, X2 + X + 1)
10.2.2 A sixteen
element field, Kron(Z2, X4
f X + 1)
10.3 Finite fields
10.4 Notes
11 Linear algebra
11.1 Vector spaces
11.2 Matrices
11.3 Row space and echelon form
11.4 Inverses and elementary matrices
11.5 Determinants
11.6 Notes
12 Error
correcting codes
12.1 Coding for redundancy
12.2 Linear codes
12.2.1 A Hamming code
12.3 Parity
check matrices
12.4 Cyclic codes
12.5 BCH codes
12.5.1 A two
error
correcting code
12.5.2 Designer codes
12.6 CDs
12.7 Notes
13 Appendix: Induction
13.1 Formulating the n
th statement
13.2 The domino theory: iteration.
13.3 Formulating the induction statement
13.3.1 Summary of steps
13.4 Squares
13.5 Templates
13.6 Recursion
13.7 Notes
14 Appendix: The usual rules
14.1 Rings
14.2 Notes
Index.
1.1 A planeful of integers, Z[i]
1.2 Circular numbers, Zn
1.3 More integers on the number line, Z [V]
1.4 Notes
2 The division algorithm
2.1 Rational integers
2.2 Norms
2.2.1 Gaussian integers
2.2.2 Z[V2]
2.3 Gaussian numbers
2.4 Q (V2)
2.5 Polynomials
2.6 Notes
3 The Euclidean algorithm
3.1 Bezout's equation
3.2 Relatively prime numbers
3.3 Gaussian integers
3.4 Notes.
4 Units
4.1 Elementary properties
4.2 Bezout's equation
4.2.1 Casting out nines
4.3 Wilson's theorem
4.4 Orders of elements: Fermat and Euler
4.5 Quadratic residues
4.6 Z[\ /2)
4.7 Notes
5 Primes
5.1 Prime numbers
5.2 Gaussian primes
5.3 Z [s /2]
5.4 Unique factorization into primes.
5.5 Zn.
5.6 Notes
6 Symmetries
6.1 Symmetries of figures in the plane
6.2 Groups
6.2.1 Permutation groups
6.2.2 Dihedral groups
6.3 The cycle structure of a permutation
6.4 Cyclic groups
6.5 The alternating groups
6.5.1 Even and odd permutations
6.5.2 The sign of a permutation
6.6 Notes
7 Matrices
7.1 Symmetries and coordinates
7.2 Two
by
two matrices
7.3 The ring of matrices
7.4 Units
7.5 Complex numbers and quaternions
7.6 Notes
8 Groups
8.1 Abstract groups
8.2 Subgroups and cosets
8.3 Isomorphism
8.4 The group of units of a finite field
8.5 Products of groups
8.6 The Euclidean groups E(l), E(2) and E(3)
8.7 Notes
9 Wallpaper patterns
9.1 One
dimensional patterns
9.2 Plane lattices
9.3 Frieze patterns
9.4 Space groups
9.5 The 17 plane groups
9.6 Notes
10 Fields
10.1 Polynomials over a field
10.2 Kronecker's construction of simple field extensions
10.2.1 A four
element field, Kron(Z2, X2 + X + 1)
10.2.2 A sixteen
element field, Kron(Z2, X4
f X + 1)
10.3 Finite fields
10.4 Notes
11 Linear algebra
11.1 Vector spaces
11.2 Matrices
11.3 Row space and echelon form
11.4 Inverses and elementary matrices
11.5 Determinants
11.6 Notes
12 Error
correcting codes
12.1 Coding for redundancy
12.2 Linear codes
12.2.1 A Hamming code
12.3 Parity
check matrices
12.4 Cyclic codes
12.5 BCH codes
12.5.1 A two
error
correcting code
12.5.2 Designer codes
12.6 CDs
12.7 Notes
13 Appendix: Induction
13.1 Formulating the n
th statement
13.2 The domino theory: iteration.
13.3 Formulating the induction statement
13.3.1 Summary of steps
13.4 Squares
13.5 Templates
13.6 Recursion
13.7 Notes
14 Appendix: The usual rules
14.1 Rings
14.2 Notes
Index.