Philipp Birken
Numerical Methods for Unsteady Compressible Flow Problems (eBook, PDF)
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Philipp Birken
Numerical Methods for Unsteady Compressible Flow Problems (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is written to give both mathematicians and engineers an overview of the state of the art in the field, as well as of new developments. The focus is on methods for the compressible Navier-Stokes equations, the solutions of which can exhibit shocks, boundary layers and turbulence.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 10.06MB
Andere Kunden interessierten sich auch für
- Philipp BirkenNumerical Methods for Unsteady Compressible Flow Problems (eBook, ePUB)48,95 €
- Abdelwahab KharabAn Introduction to Numerical Methods (eBook, PDF)57,95 €
- Bilal AyyubNumerical Analysis for Engineers (eBook, PDF)115,95 €
- Sergio BlanesA Concise Introduction to Geometric Numerical Integration (eBook, PDF)52,95 €
- Victor S. Ryaben'kiiA Theoretical Introduction to Numerical Analysis (eBook, PDF)65,95 €
- Joe D. HoffmanNumerical Methods for Engineers and Scientists (eBook, PDF)125,95 €
- Advanced Mathematical Analysis and its Applications (eBook, PDF)204,95 €
-
-
-
This book is written to give both mathematicians and engineers an overview of the state of the art in the field, as well as of new developments. The focus is on methods for the compressible Navier-Stokes equations, the solutions of which can exhibit shocks, boundary layers and turbulence.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 246
- Erscheinungstermin: 4. Juli 2021
- Englisch
- ISBN-13: 9781000403527
- Artikelnr.: 62014948
- Verlag: Taylor & Francis
- Seitenzahl: 246
- Erscheinungstermin: 4. Juli 2021
- Englisch
- ISBN-13: 9781000403527
- Artikelnr.: 62014948
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Philipp Birken is an associate professor for numerical analysis and scientific computing at the Centre for the Mathematical Sciences at Lund University, Sweden. He received his PhD in mathematics in 2005 from the University of Kassel, Germany, where he also received his habilitation in 2012. He was a PostDoc and a consulting assistant professor at the Institute for Computational & Mathematical Engineering at Stanford University, USA. His work is in numerical methods for compressible CFD and Fluid-Structure-Interaction.
Preface. 1. Introduction. 1.1. The method of lines. 1.2. Hardware. 1.3.
Notation. 1.4. Outline. 2. The Governing Equation. 2.1. The Navier-Stokes
Equations. 2.2. Nondimensionalization. 2.3. Source terms. 2.4.
Simplifications of the Navier-Stokes equations. 2.5. The Euler Equations.
2.6. Solution theory. 2.7. Boundary layers. 2.8. Boundary layers. 2.9.
Laminar and turbulent flows. 3. The Space discretization. 3.1. Structured
and unstructured Grids. 3.2. Finite Volume Methods. 3.3. The Line Integrals
and Numerical Flux Functions. 3.4 Convergence theory for finite volume
methods. 3.5. Source Terms. 3.6. Finite volume methods of higher order.
3.7. Discontinuous Galerkin methods. 3.8. Convergence theory for DG
methods. 3.9. Boundary Conditions. 3.10. Spatial Adaptation. 4. Time
Integration Schemes. 4.1. Order of convergence and order of consistency.
4.2 Stability. 4.3. Stiff problems. 4.4. Backward Differentiation formulas.
4.5. Runge-Kutta methods. 4.6. Rosenbrock-type methods. 4.7. Adaptive time
step size selection. 4.8. Operator Splittings. 4.9. Alternatives to the
method of lines. 4.10. Parallelization in time. 5. Solving equation
systems. 5.1. The nonlinear systems. 5.2. The linear systems. 5.3. Rate of
convergence and error. 5.4. Termination criteria. 5.5. Fixed Point methods.
5.6. Multigrid methods. 5.7. Newton's method. 5.8. Krylov subspace methods.
5.9. Jacobian Free Newton-Krylov methods. 5.10. Comparison of GMRES and
BiCGSTAB. 5.11. Comparison of variants of Newton's method. 6.
Preconditioning linear systems. 6.1. Preconditioning for JFNK schemes. 6.2.
Specific preconditioners. 6.3. Preconditioning in parallel. 6.4. Sequences
of linear systems. 6.5. Discretization for the preconditioner. 7. The final
schemes. 7.1. DIRK scheme. 7.2. Rosenbrock scheme. 7.3. Parallelization.
7.4. Efficiency of Finite Volume schemes. 7.5. Efficiency of Discontinuous
Galerkin schemes. 8. Thermal Fluid Structure Interaction. 8.1. Gas
Quenching. 8.2. The mathematical model. 8.3. Space discretization. 8.4.
Coupled time integration. 8.5. Dirichlet-Neumann iteration. 8.6.
Alternative solvers. 8.7. Numerical Results. A. Test problems. A.1.
Shu-Vortex. A.2. Supersonic Flow around a cylinder. A.3. Wind Turbine. A.4.
Vortex shedding behind a sphere. B. Coefficients of time integration
methods. Bibliography. Index.
Notation. 1.4. Outline. 2. The Governing Equation. 2.1. The Navier-Stokes
Equations. 2.2. Nondimensionalization. 2.3. Source terms. 2.4.
Simplifications of the Navier-Stokes equations. 2.5. The Euler Equations.
2.6. Solution theory. 2.7. Boundary layers. 2.8. Boundary layers. 2.9.
Laminar and turbulent flows. 3. The Space discretization. 3.1. Structured
and unstructured Grids. 3.2. Finite Volume Methods. 3.3. The Line Integrals
and Numerical Flux Functions. 3.4 Convergence theory for finite volume
methods. 3.5. Source Terms. 3.6. Finite volume methods of higher order.
3.7. Discontinuous Galerkin methods. 3.8. Convergence theory for DG
methods. 3.9. Boundary Conditions. 3.10. Spatial Adaptation. 4. Time
Integration Schemes. 4.1. Order of convergence and order of consistency.
4.2 Stability. 4.3. Stiff problems. 4.4. Backward Differentiation formulas.
4.5. Runge-Kutta methods. 4.6. Rosenbrock-type methods. 4.7. Adaptive time
step size selection. 4.8. Operator Splittings. 4.9. Alternatives to the
method of lines. 4.10. Parallelization in time. 5. Solving equation
systems. 5.1. The nonlinear systems. 5.2. The linear systems. 5.3. Rate of
convergence and error. 5.4. Termination criteria. 5.5. Fixed Point methods.
5.6. Multigrid methods. 5.7. Newton's method. 5.8. Krylov subspace methods.
5.9. Jacobian Free Newton-Krylov methods. 5.10. Comparison of GMRES and
BiCGSTAB. 5.11. Comparison of variants of Newton's method. 6.
Preconditioning linear systems. 6.1. Preconditioning for JFNK schemes. 6.2.
Specific preconditioners. 6.3. Preconditioning in parallel. 6.4. Sequences
of linear systems. 6.5. Discretization for the preconditioner. 7. The final
schemes. 7.1. DIRK scheme. 7.2. Rosenbrock scheme. 7.3. Parallelization.
7.4. Efficiency of Finite Volume schemes. 7.5. Efficiency of Discontinuous
Galerkin schemes. 8. Thermal Fluid Structure Interaction. 8.1. Gas
Quenching. 8.2. The mathematical model. 8.3. Space discretization. 8.4.
Coupled time integration. 8.5. Dirichlet-Neumann iteration. 8.6.
Alternative solvers. 8.7. Numerical Results. A. Test problems. A.1.
Shu-Vortex. A.2. Supersonic Flow around a cylinder. A.3. Wind Turbine. A.4.
Vortex shedding behind a sphere. B. Coefficients of time integration
methods. Bibliography. Index.
Preface. 1. Introduction. 1.1. The method of lines. 1.2. Hardware. 1.3. Notation. 1.4. Outline. 2. The Governing Equation. 2.1. The Navier-Stokes Equations. 2.2. Nondimensionalization. 2.3. Source terms. 2.4. Simplifications of the Navier-Stokes equations. 2.5. The Euler Equations. 2.6. Solution theory. 2.7. Boundary layers. 2.8. Boundary layers. 2.9. Laminar and turbulent flows. 3. The Space discretization. 3.1. Structured and unstructured Grids. 3.2. Finite Volume Methods. 3.3. The Line Integrals and Numerical Flux Functions. 3.4 Convergence theory for finite volume methods. 3.5. Source Terms. 3.6. Finite volume methods of higher order. 3.7. Discontinuous Galerkin methods. 3.8. Convergence theory for DG methods. 3.9. Boundary Conditions. 3.10. Spatial Adaptation. 4. Time Integration Schemes. 4.1. Order of convergence and order of consistency. 4.2 Stability. 4.3. Stiff problems. 4.4. Backward Differentiation formulas. 4.5. Runge-Kutta methods. 4.6. Rosenbrock-type methods. 4.7. Adaptive time step size selection. 4.8. Operator Splittings. 4.9. Alternatives to the method of lines. 4.10. Parallelization in time. 5. Solving equation systems. 5.1. The nonlinear systems. 5.2. The linear systems. 5.3. Rate of convergence and error. 5.4. Termination criteria. 5.5. Fixed Point methods. 5.6. Multigrid methods. 5.7. Newton's method. 5.8. Krylov subspace methods. 5.9. Jacobian Free Newton-Krylov methods. 5.10. Comparison of GMRES and BiCGSTAB. 5.11. Comparison of variants of Newton's method. 6. Preconditioning linear systems. 6.1. Preconditioning for JFNK schemes. 6.2. Specific preconditioners. 6.3. Preconditioning in parallel. 6.4. Sequences of linear systems. 6.5. Discretization for the preconditioner. 7. The final schemes. 7.1. DIRK scheme. 7.2. Rosenbrock scheme. 7.3. Parallelization. 7.4. Efficiency of Finite Volume schemes. 7.5. Efficiency of Discontinuous Galerkin schemes. 8. Thermal Fluid Structure Interaction. 8.1. Gas Quenching. 8.2. The mathematical model. 8.3. Space discretization. 8.4. Coupled time integration. 8.5. Dirichlet-Neumann iteration. 8.6. Alternative solvers. 8.7. Numerical Results. A. Test problems. A.1. Shu-Vortex. A.2. Supersonic Flow around a cylinder. A.3. Wind Turbine. A.4. Vortex shedding behind a sphere. B. Coefficients of time integration methods. Bibliography. Index.
Preface. 1. Introduction. 1.1. The method of lines. 1.2. Hardware. 1.3.
Notation. 1.4. Outline. 2. The Governing Equation. 2.1. The Navier-Stokes
Equations. 2.2. Nondimensionalization. 2.3. Source terms. 2.4.
Simplifications of the Navier-Stokes equations. 2.5. The Euler Equations.
2.6. Solution theory. 2.7. Boundary layers. 2.8. Boundary layers. 2.9.
Laminar and turbulent flows. 3. The Space discretization. 3.1. Structured
and unstructured Grids. 3.2. Finite Volume Methods. 3.3. The Line Integrals
and Numerical Flux Functions. 3.4 Convergence theory for finite volume
methods. 3.5. Source Terms. 3.6. Finite volume methods of higher order.
3.7. Discontinuous Galerkin methods. 3.8. Convergence theory for DG
methods. 3.9. Boundary Conditions. 3.10. Spatial Adaptation. 4. Time
Integration Schemes. 4.1. Order of convergence and order of consistency.
4.2 Stability. 4.3. Stiff problems. 4.4. Backward Differentiation formulas.
4.5. Runge-Kutta methods. 4.6. Rosenbrock-type methods. 4.7. Adaptive time
step size selection. 4.8. Operator Splittings. 4.9. Alternatives to the
method of lines. 4.10. Parallelization in time. 5. Solving equation
systems. 5.1. The nonlinear systems. 5.2. The linear systems. 5.3. Rate of
convergence and error. 5.4. Termination criteria. 5.5. Fixed Point methods.
5.6. Multigrid methods. 5.7. Newton's method. 5.8. Krylov subspace methods.
5.9. Jacobian Free Newton-Krylov methods. 5.10. Comparison of GMRES and
BiCGSTAB. 5.11. Comparison of variants of Newton's method. 6.
Preconditioning linear systems. 6.1. Preconditioning for JFNK schemes. 6.2.
Specific preconditioners. 6.3. Preconditioning in parallel. 6.4. Sequences
of linear systems. 6.5. Discretization for the preconditioner. 7. The final
schemes. 7.1. DIRK scheme. 7.2. Rosenbrock scheme. 7.3. Parallelization.
7.4. Efficiency of Finite Volume schemes. 7.5. Efficiency of Discontinuous
Galerkin schemes. 8. Thermal Fluid Structure Interaction. 8.1. Gas
Quenching. 8.2. The mathematical model. 8.3. Space discretization. 8.4.
Coupled time integration. 8.5. Dirichlet-Neumann iteration. 8.6.
Alternative solvers. 8.7. Numerical Results. A. Test problems. A.1.
Shu-Vortex. A.2. Supersonic Flow around a cylinder. A.3. Wind Turbine. A.4.
Vortex shedding behind a sphere. B. Coefficients of time integration
methods. Bibliography. Index.
Notation. 1.4. Outline. 2. The Governing Equation. 2.1. The Navier-Stokes
Equations. 2.2. Nondimensionalization. 2.3. Source terms. 2.4.
Simplifications of the Navier-Stokes equations. 2.5. The Euler Equations.
2.6. Solution theory. 2.7. Boundary layers. 2.8. Boundary layers. 2.9.
Laminar and turbulent flows. 3. The Space discretization. 3.1. Structured
and unstructured Grids. 3.2. Finite Volume Methods. 3.3. The Line Integrals
and Numerical Flux Functions. 3.4 Convergence theory for finite volume
methods. 3.5. Source Terms. 3.6. Finite volume methods of higher order.
3.7. Discontinuous Galerkin methods. 3.8. Convergence theory for DG
methods. 3.9. Boundary Conditions. 3.10. Spatial Adaptation. 4. Time
Integration Schemes. 4.1. Order of convergence and order of consistency.
4.2 Stability. 4.3. Stiff problems. 4.4. Backward Differentiation formulas.
4.5. Runge-Kutta methods. 4.6. Rosenbrock-type methods. 4.7. Adaptive time
step size selection. 4.8. Operator Splittings. 4.9. Alternatives to the
method of lines. 4.10. Parallelization in time. 5. Solving equation
systems. 5.1. The nonlinear systems. 5.2. The linear systems. 5.3. Rate of
convergence and error. 5.4. Termination criteria. 5.5. Fixed Point methods.
5.6. Multigrid methods. 5.7. Newton's method. 5.8. Krylov subspace methods.
5.9. Jacobian Free Newton-Krylov methods. 5.10. Comparison of GMRES and
BiCGSTAB. 5.11. Comparison of variants of Newton's method. 6.
Preconditioning linear systems. 6.1. Preconditioning for JFNK schemes. 6.2.
Specific preconditioners. 6.3. Preconditioning in parallel. 6.4. Sequences
of linear systems. 6.5. Discretization for the preconditioner. 7. The final
schemes. 7.1. DIRK scheme. 7.2. Rosenbrock scheme. 7.3. Parallelization.
7.4. Efficiency of Finite Volume schemes. 7.5. Efficiency of Discontinuous
Galerkin schemes. 8. Thermal Fluid Structure Interaction. 8.1. Gas
Quenching. 8.2. The mathematical model. 8.3. Space discretization. 8.4.
Coupled time integration. 8.5. Dirichlet-Neumann iteration. 8.6.
Alternative solvers. 8.7. Numerical Results. A. Test problems. A.1.
Shu-Vortex. A.2. Supersonic Flow around a cylinder. A.3. Wind Turbine. A.4.
Vortex shedding behind a sphere. B. Coefficients of time integration
methods. Bibliography. Index.
Preface. 1. Introduction. 1.1. The method of lines. 1.2. Hardware. 1.3. Notation. 1.4. Outline. 2. The Governing Equation. 2.1. The Navier-Stokes Equations. 2.2. Nondimensionalization. 2.3. Source terms. 2.4. Simplifications of the Navier-Stokes equations. 2.5. The Euler Equations. 2.6. Solution theory. 2.7. Boundary layers. 2.8. Boundary layers. 2.9. Laminar and turbulent flows. 3. The Space discretization. 3.1. Structured and unstructured Grids. 3.2. Finite Volume Methods. 3.3. The Line Integrals and Numerical Flux Functions. 3.4 Convergence theory for finite volume methods. 3.5. Source Terms. 3.6. Finite volume methods of higher order. 3.7. Discontinuous Galerkin methods. 3.8. Convergence theory for DG methods. 3.9. Boundary Conditions. 3.10. Spatial Adaptation. 4. Time Integration Schemes. 4.1. Order of convergence and order of consistency. 4.2 Stability. 4.3. Stiff problems. 4.4. Backward Differentiation formulas. 4.5. Runge-Kutta methods. 4.6. Rosenbrock-type methods. 4.7. Adaptive time step size selection. 4.8. Operator Splittings. 4.9. Alternatives to the method of lines. 4.10. Parallelization in time. 5. Solving equation systems. 5.1. The nonlinear systems. 5.2. The linear systems. 5.3. Rate of convergence and error. 5.4. Termination criteria. 5.5. Fixed Point methods. 5.6. Multigrid methods. 5.7. Newton's method. 5.8. Krylov subspace methods. 5.9. Jacobian Free Newton-Krylov methods. 5.10. Comparison of GMRES and BiCGSTAB. 5.11. Comparison of variants of Newton's method. 6. Preconditioning linear systems. 6.1. Preconditioning for JFNK schemes. 6.2. Specific preconditioners. 6.3. Preconditioning in parallel. 6.4. Sequences of linear systems. 6.5. Discretization for the preconditioner. 7. The final schemes. 7.1. DIRK scheme. 7.2. Rosenbrock scheme. 7.3. Parallelization. 7.4. Efficiency of Finite Volume schemes. 7.5. Efficiency of Discontinuous Galerkin schemes. 8. Thermal Fluid Structure Interaction. 8.1. Gas Quenching. 8.2. The mathematical model. 8.3. Space discretization. 8.4. Coupled time integration. 8.5. Dirichlet-Neumann iteration. 8.6. Alternative solvers. 8.7. Numerical Results. A. Test problems. A.1. Shu-Vortex. A.2. Supersonic Flow around a cylinder. A.3. Wind Turbine. A.4. Vortex shedding behind a sphere. B. Coefficients of time integration methods. Bibliography. Index.