Edwin J. Kreuzer
Numerische Untersuchung nichtlinearer dynamischer Systeme (eBook, PDF)
-30%11
38,66 €
54,99 €**
38,66 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
19 °P sammeln
-30%11
38,66 €
54,99 €**
38,66 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
19 °P sammeln
Als Download kaufen
54,99 €****
-30%11
38,66 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
19 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
54,99 €****
-30%11
38,66 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
19 °P sammeln
Edwin J. Kreuzer
Numerische Untersuchung nichtlinearer dynamischer Systeme (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 16.66MB
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 194
- Erscheinungstermin: 9. November 2013
- Deutsch
- ISBN-13: 9783642829680
- Artikelnr.: 53088298
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
1 Einleitung.- 1.1 Literaturübersicht.- 1.2 Mathematische Beschreibung nichtlinearer dynamischer Systeme.- 1.3 Ziele der Arbeit.- 1.4 Inhalt der Arbeit.- 2 Mathematische Grundlagen.- 2.1 Grundbegriffe.- 2.2 Lineare Systeme.- 2.3 Invariante Unterräume.- 2.4 Nichtlineare Systeme.- 2.5 Lineare und nichtlineare Abbildungen.- 2.6 Poincaré-Abbildungen.- 2.7 Periodische Lösungen und Fixpunkte von Punktabbildungen.- 2.8 Asymptotisches Verhalten.- 3 Konservative Systeme.- 3.1 Hamiltonsche Bewegungsgleichungen.- 3.2 Wirkungs-Winkelvariablen.- 3.3 Integrierbare und nichtintegrierbare Systeme.- 3.4 Kanonische Störungstheorie.- 3.5 Chaotisches Verhalten flächenbewahrender Abbildungen.- 3.6 Stabilität mehrdimensionaler Hamiltonscher Systeme.- 3.7 Hénon-Heiles System.- 4 Nichtkonservative Systeme.- 4.1 Attraktoren.- 4.2 Qualitative Änderung von Attraktoren.- 4.3 Charakterisierung von Attraktoren.- 4.4 Nichtautonomes System: Modifizierte Duffing-Gleichung.- 5 Fundamentale Untersuchungsmethoden.- 5.1 Übersicht über Näherungsverfahren.- 5.2 Zeitverläufe und Phasenportraits durch numerische Integration.- 5.3 Punktabbildungen.- 5.4 Leistungsspektren aus der Fourier-Analyse.- 5.5 Ljapunov-Exponenten.- 5.6 Dimension.- 5.7 Entropie und Kurzzeitvorhersagen.- 5.8 Kritische Wertung numerischer Ergebnisse.- 5.9 Nichtautonomes System: Modifizierte Duffing-Gleichung.- 6 Zellabbildungsmethode.- 6.1 Diskretisierung des Zustandsraumes.- 6.2 Einfache Zellabbildungsmethode.- 6.3 Allgemeine Zellabbildungsmethode.- 6.4 Zur Theorie der Markov-Ketten.- 6.5 Bemerkungen zum Rechenalgorithmus und Eigenschaften der allgemeinen Zellabbildung.- 6.6 Beispiele zur allgemeinen Zellabbildung.- 6.7 Erfahrungen mit der Zellabbildungsmethode.- 7 Zusammenfassung.- Literatur.
1 Einleitung.- 1.1 Literaturübersicht.- 1.2 Mathematische Beschreibung nichtlinearer dynamischer Systeme.- 1.3 Ziele der Arbeit.- 1.4 Inhalt der Arbeit.- 2 Mathematische Grundlagen.- 2.1 Grundbegriffe.- 2.2 Lineare Systeme.- 2.3 Invariante Unterräume.- 2.4 Nichtlineare Systeme.- 2.5 Lineare und nichtlineare Abbildungen.- 2.6 Poincaré-Abbildungen.- 2.7 Periodische Lösungen und Fixpunkte von Punktabbildungen.- 2.8 Asymptotisches Verhalten.- 3 Konservative Systeme.- 3.1 Hamiltonsche Bewegungsgleichungen.- 3.2 Wirkungs-Winkelvariablen.- 3.3 Integrierbare und nichtintegrierbare Systeme.- 3.4 Kanonische Störungstheorie.- 3.5 Chaotisches Verhalten flächenbewahrender Abbildungen.- 3.6 Stabilität mehrdimensionaler Hamiltonscher Systeme.- 3.7 Hénon-Heiles System.- 4 Nichtkonservative Systeme.- 4.1 Attraktoren.- 4.2 Qualitative Änderung von Attraktoren.- 4.3 Charakterisierung von Attraktoren.- 4.4 Nichtautonomes System: Modifizierte Duffing-Gleichung.- 5 Fundamentale Untersuchungsmethoden.- 5.1 Übersicht über Näherungsverfahren.- 5.2 Zeitverläufe und Phasenportraits durch numerische Integration.- 5.3 Punktabbildungen.- 5.4 Leistungsspektren aus der Fourier-Analyse.- 5.5 Ljapunov-Exponenten.- 5.6 Dimension.- 5.7 Entropie und Kurzzeitvorhersagen.- 5.8 Kritische Wertung numerischer Ergebnisse.- 5.9 Nichtautonomes System: Modifizierte Duffing-Gleichung.- 6 Zellabbildungsmethode.- 6.1 Diskretisierung des Zustandsraumes.- 6.2 Einfache Zellabbildungsmethode.- 6.3 Allgemeine Zellabbildungsmethode.- 6.4 Zur Theorie der Markov-Ketten.- 6.5 Bemerkungen zum Rechenalgorithmus und Eigenschaften der allgemeinen Zellabbildung.- 6.6 Beispiele zur allgemeinen Zellabbildung.- 6.7 Erfahrungen mit der Zellabbildungsmethode.- 7 Zusammenfassung.- Literatur.