90,95 €
90,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
45 °P sammeln
90,95 €
90,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
45 °P sammeln
Als Download kaufen
90,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
45 °P sammeln
Jetzt verschenken
90,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
45 °P sammeln
  • Format: ePub

The development of open microfluidics is relatively recent and is an emerging sub-domain of capillarity, with many applications. While there are various publications on the subject, a book presenting the recent advances in open microfluidics-especially in the domain of the dynamics of open microflows-is needed by researchers and students.
This second edition research text presents the state-of-the-art theory of open microfluidics, including inertial and viscous regimes, uniform channels and converging/diverging channels, networks, bypasses and valves. The book begins by recalling the
…mehr

Produktbeschreibung
The development of open microfluidics is relatively recent and is an emerging sub-domain of capillarity, with many applications. While there are various publications on the subject, a book presenting the recent advances in open microfluidics-especially in the domain of the dynamics of open microflows-is needed by researchers and students.

This second edition research text presents the state-of-the-art theory of open microfluidics, including inertial and viscous regimes, uniform channels and converging/diverging channels, networks, bypasses and valves. The book begins by recalling the conditions for the establishment of an open microflow, and then presents the dynamics of open microflows guided by different solid structures such as fibres and threads, with a focus on open-channels. The book shows how the Lucas-Washburn law must be adapted to describe the dynamics of open microflows. It also demonstrates how surface energies, fluid properties, and solid geometry are combined to design open-microfluidic systems and devices that are used in domains such as engineering, biotechnology, biology, chemistry, medicine, materials, biochemistry, and spacecraft. Additionally, the book shows how biomimetics has inspired new advanced open microfluidic designs.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

Autorenporträt
Jean Berthier is an Affiliate Professor at the University of Washington, Seattle, USA. He received an MS in Mathematics from the University of Grenoble, an engineering diploma from the Institut National Polytechnique in Grenoble, and a PhD from the University Pierre et Marie Curie in Paris. After spending four years at Sandia and Los Alamos National laboratories focused on the interaction between liquid and gases, he joined the CEA-Leti in Grenoble, France, where he was involved in the development of microfluidic solutions for liquid-liquid extraction, bio-encapsulation of living cells, capillary solutions for portable point-of-care devices.

Ashleigh Theberge is an Associate Professor of Chemistry at the University of Washington and Adjunct Associate Professor of Urology at the University of Washington School of Medicine. She received a BA in Chemistry from Williams College and a PhD in Chemistry from the University of Cambridge, UK, with Wilhelm Huck in droplet-based microfluidics. Her work focuses on using open microfluidics to study cell signaling, to create new methods for three dimensional tissue patterning, and to develop technologies for remote sampling of blood, saliva, and air for diagnostics and decentralized clinical research.

Erwin Berthier is presently Affiliate Associate Professor at the University of Washington in Seattle. He is also co-founder and CTO of Tasso Inc., a Seattle-based company developing patient-centric, distributed health technologies. He received a Diplome d'Ingenieur in Fluid Mechanics from ENSTA (Ecole Nationale Supérieure des Technologies Avancées) in Paris, a Masters of Electrical Engineering from the University of Canterbury (New Zealand), and a PhD in Biomedical Engineering from the University of Wisconsin in Madison. His current research interests focus on advancing the theory and applications of open microfluidics as well as distributed sensing technologies for healthcare applications, agriculture, and public health.