94,95 €
94,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
47 °P sammeln
94,95 €
94,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
47 °P sammeln
Als Download kaufen
94,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
47 °P sammeln
Jetzt verschenken
94,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
47 °P sammeln
  • Format: ePub

Although numerical approximation and statistical inference are traditionally covered as entirely separate subjects, they are intimately connected through the common purpose of making estimations with partial information. This book explores these connections from a game and decision theoretic perspective, showing how they constitute a pathway to developing simple and general methods for solving fundamental problems in both areas. It illustrates these interplays by addressing problems related to numerical homogenization, operator adapted wavelets, fast solvers, and Gaussian processes. This…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 30.08MB
Produktbeschreibung
Although numerical approximation and statistical inference are traditionally covered as entirely separate subjects, they are intimately connected through the common purpose of making estimations with partial information. This book explores these connections from a game and decision theoretic perspective, showing how they constitute a pathway to developing simple and general methods for solving fundamental problems in both areas. It illustrates these interplays by addressing problems related to numerical homogenization, operator adapted wavelets, fast solvers, and Gaussian processes. This perspective reveals much of their essential anatomy and greatly facilitates advances in these areas, thereby appearing to establish a general principle for guiding the process of scientific discovery. This book is designed for graduate students, researchers, and engineers in mathematics, applied mathematics, and computer science, and particularly researchers interested in drawing on and developing this interface between approximation, inference, and learning.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Houman Owhadi is Professor of Applied and Computational Mathematics and Control and Dynamical Systems in the Computing and Mathematical Sciences department at the California Institute of Technology. He is one of the main editors of the Handbook of Uncertainty Quantification (2016). His research interests concern the exploration of interplays between numerical approximation, statistical inference and learning from a game theoretic perspective, especially the facilitation/automation possibilities emerging from these interplays.