Optical Design Using Excel (eBook, ePUB)
Practical Calculations for Laser Optical Systems
Alle Infos zum eBook verschenken
Optical Design Using Excel (eBook, ePUB)
Practical Calculations for Laser Optical Systems
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A practical introductory guide to optical design covering geometrical optics, simple wave-optics and diffraction, using Excel software explains practical calculation methods for designing optical systems with fully worked-out examples and avoiding complex mathematical methods includes practical calculations for ray tracing, laser beam (Gaussian beam) focusing, and diffraction calculations; the ray tracing and the diffraction calculations are done by using the VBA program which Excel provides as a supporting tool describes basic optical theory and application methods, and provides readers with…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 28.26MB
- Philip C. D. HobbsBuilding Electro-Optical Systems (eBook, ePUB)118,99 €
- Alastair D. McAulayMilitary Laser Technology for Defense (eBook, ePUB)81,99 €
- Andrew WeinerUltrafast Optics (eBook, ePUB)151,99 €
- Inverse Problems in Vision and 3D Tomography (eBook, ePUB)207,99 €
- Jeff HechtUnderstanding Lasers (eBook, ePUB)91,99 €
- Anil K. MainiLasers and Optoelectronics (eBook, ePUB)109,99 €
- David L. AndrewsPhotonics, Volume 1 (eBook, ePUB)127,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley-IEEE Press
- Seitenzahl: 336
- Erscheinungstermin: 2. Juli 2015
- Englisch
- ISBN-13: 9781118939130
- Artikelnr.: 43419699
- Verlag: Wiley-IEEE Press
- Seitenzahl: 336
- Erscheinungstermin: 2. Juli 2015
- Englisch
- ISBN-13: 9781118939130
- Artikelnr.: 43419699
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Outline of contents ii
Chapter 1 - Geometrical optics 1
1.1 Characteristics of lasers 2
1.2 The three fundamental characteristics of light which form the basis of
geometrical optics 3
1.3 Fermat's principle 4
1.4 Principle of reversibility 7
1.5 Paraxial theory using thin lenses 7
1.6 The five Seidel aberrations 15
1.7 The sine condition 21
1.8 Aplanatic lenses 23
1.9 Reflection and transmission 24
Chapter 2 - Examples of simple optical design using paraxial theory 27
2.1 Types of lenses 28
2.2 Applied calculations for simple optical systems 35
2.3 Considerations relating to the design of laser optical systems 42
Chapter 3 - Ray tracing applications of paraxial theory 47
3.1 Deriving the equations for ray tracing using paraxial theory 48
3.2 Problems of ray tracing calculations using paraxial theory 50
Chapter 4 - Two-dimensional ray tracing 53
4.1 Ray tracing for a spherical surface 54
4.2 Ray tracing for a plane surface 56
4.3 Ray tracing for an aspheric surface (using VBA programming) 57
4.4 Ray tracing for an aberration-free lens 60
4.5 Optical path length calculation for an aberration-free lens 62
4.6 Ray tracing for an optical system which is set at a tilt 65
4.7 How to use the ray trace calculation table 68
4.8 A method for generating a ray trace calculation table using a VBA
program 73
4.9 Sample ray tracing problems 76
Chapter 5 - Three-dimensional ray tracing 101
5.1 Three-dimensional ray tracing for a spherical surface 102
5.2 Three-dimensional ray tracing for a cylindrical surface 105
5.3 Simulation for two cylindrical lenses which are fixed longitudinally
(or laterally) but allowed to rotate slightly around the optical axis 106
5.4 Three-dimensional ray tracing for a plane surface which is
perpendicular to the optical axis 108
5.5 Three-dimensional ray tracing for an aberration-free lens 109
5.6 Three-dimensional ray tracing for a lens which is set at a tilt 115
5.7 How to use the three-dimensional ray trace calculation table 121
5.8 Operating instructions for using the ray trace calculation table, while
running the VBA program 125
5.9 Three dimensional ray tracing problems 128
Chapter 6 - Mathematical formulae for describing wave motion 137
6.1 Mathematical formulae for describing wave motion 138
6.2 Describing waves with complex exponential functions 142
6.3 Problems relating to wave motion 146
Chapter 7 - Calculations for focusing Gaussian beams 149
7.1 What is a Gaussian beam? 150
7.2 Equations for focusing a Gaussian beam 154
7.3 The M2 (M squared) factor 156
7.4 Sample Gaussian beam focusing problems 159
Chapter 8 - Diffraction: theory and calculations 167
8.1 The concept of diffraction 168
8.2 Diffraction at a slit aperture 170
8.3 Diffraction calculations using numerical integration 171
8.4 Diffraction at a rectangular aperture 173
8.5 Diffraction at a circular aperture 174
8.6 Diffraction wave generated after the incident wave exits a focusing
lens 177
8.7 Diffraction calculation problems 178
Chapter 9 - Calculations for Gaussian beam diffraction 183
9.1 The power and the central irradiance of a Gaussian beam 184
9.2 General equations for waves diffracted by an aperture 189
9.3 Diffraction wave equations for a focused beam 191
9.4 Diffraction wave equations for a collimated beam 194
9.5 Diffraction calculation program 197
9.6 Operating instructions for diffraction calculation programs 198
9.7 Gaussian beam diffraction calculation problems 206
Appendix 219
Appendix A Paraxial theory: A detailed account 220
Appendix B A table of refractive indices for BK7 225
Appendix C Equations for plane waves, spherical waves and Gaussian beams
226
Appendix D Numerical integration methods 239
Appendix E Fresnel diffraction and Fraunhofer diffraction 241
Appendix F Wave-front conversion by a lens 245
Appendix G List of Excel calculation files on the companion Website 247
References 249
Index 250
Outline of contents ii
Chapter 1 - Geometrical optics 1
1.1 Characteristics of lasers 2
1.2 The three fundamental characteristics of light which form the basis of
geometrical optics 3
1.3 Fermat's principle 4
1.4 Principle of reversibility 7
1.5 Paraxial theory using thin lenses 7
1.6 The five Seidel aberrations 15
1.7 The sine condition 21
1.8 Aplanatic lenses 23
1.9 Reflection and transmission 24
Chapter 2 - Examples of simple optical design using paraxial theory 27
2.1 Types of lenses 28
2.2 Applied calculations for simple optical systems 35
2.3 Considerations relating to the design of laser optical systems 42
Chapter 3 - Ray tracing applications of paraxial theory 47
3.1 Deriving the equations for ray tracing using paraxial theory 48
3.2 Problems of ray tracing calculations using paraxial theory 50
Chapter 4 - Two-dimensional ray tracing 53
4.1 Ray tracing for a spherical surface 54
4.2 Ray tracing for a plane surface 56
4.3 Ray tracing for an aspheric surface (using VBA programming) 57
4.4 Ray tracing for an aberration-free lens 60
4.5 Optical path length calculation for an aberration-free lens 62
4.6 Ray tracing for an optical system which is set at a tilt 65
4.7 How to use the ray trace calculation table 68
4.8 A method for generating a ray trace calculation table using a VBA
program 73
4.9 Sample ray tracing problems 76
Chapter 5 - Three-dimensional ray tracing 101
5.1 Three-dimensional ray tracing for a spherical surface 102
5.2 Three-dimensional ray tracing for a cylindrical surface 105
5.3 Simulation for two cylindrical lenses which are fixed longitudinally
(or laterally) but allowed to rotate slightly around the optical axis 106
5.4 Three-dimensional ray tracing for a plane surface which is
perpendicular to the optical axis 108
5.5 Three-dimensional ray tracing for an aberration-free lens 109
5.6 Three-dimensional ray tracing for a lens which is set at a tilt 115
5.7 How to use the three-dimensional ray trace calculation table 121
5.8 Operating instructions for using the ray trace calculation table, while
running the VBA program 125
5.9 Three dimensional ray tracing problems 128
Chapter 6 - Mathematical formulae for describing wave motion 137
6.1 Mathematical formulae for describing wave motion 138
6.2 Describing waves with complex exponential functions 142
6.3 Problems relating to wave motion 146
Chapter 7 - Calculations for focusing Gaussian beams 149
7.1 What is a Gaussian beam? 150
7.2 Equations for focusing a Gaussian beam 154
7.3 The M2 (M squared) factor 156
7.4 Sample Gaussian beam focusing problems 159
Chapter 8 - Diffraction: theory and calculations 167
8.1 The concept of diffraction 168
8.2 Diffraction at a slit aperture 170
8.3 Diffraction calculations using numerical integration 171
8.4 Diffraction at a rectangular aperture 173
8.5 Diffraction at a circular aperture 174
8.6 Diffraction wave generated after the incident wave exits a focusing
lens 177
8.7 Diffraction calculation problems 178
Chapter 9 - Calculations for Gaussian beam diffraction 183
9.1 The power and the central irradiance of a Gaussian beam 184
9.2 General equations for waves diffracted by an aperture 189
9.3 Diffraction wave equations for a focused beam 191
9.4 Diffraction wave equations for a collimated beam 194
9.5 Diffraction calculation program 197
9.6 Operating instructions for diffraction calculation programs 198
9.7 Gaussian beam diffraction calculation problems 206
Appendix 219
Appendix A Paraxial theory: A detailed account 220
Appendix B A table of refractive indices for BK7 225
Appendix C Equations for plane waves, spherical waves and Gaussian beams
226
Appendix D Numerical integration methods 239
Appendix E Fresnel diffraction and Fraunhofer diffraction 241
Appendix F Wave-front conversion by a lens 245
Appendix G List of Excel calculation files on the companion Website 247
References 249
Index 250