21,04 €
Statt 28,55 €**
21,04 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
21,04 €
Statt 28,55 €**
21,04 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 28,55 €****
21,04 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 28,55 €****
21,04 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Infolge des hohen Kostendrucks wird es für Kraftwerksbetreiber zunehmend wichtiger, ihre Anlagen in jedem geforderten Lastpunkt optimal zu betreiben und Abweichungen vom Sollzustand frühzeitig zu erkennen. In dieser Arbeit wird eine einheitliche und übertragbare Methodik für den Entwurf und die Implementierung von Gütegraden zur Online-Zustandsüberwachung unterschiedlicher Komponenten in Kraftwerken auf Basis von künstlichen Neuronalen Netzen vorgestellt. Durch Extrapolation des zeitlichen Gütegrad- oder Kostenverlaufs infolge der Zustandsverschlechterung ist es möglich, den optimalen…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 22.74MB
  • FamilySharing(5)
Produktbeschreibung
Infolge des hohen Kostendrucks wird es für Kraftwerksbetreiber zunehmend wichtiger, ihre Anlagen in jedem geforderten Lastpunkt optimal zu betreiben und Abweichungen vom Sollzustand frühzeitig zu erkennen. In dieser Arbeit wird eine einheitliche und übertragbare Methodik für den Entwurf und die Implementierung von Gütegraden zur Online-Zustandsüberwachung unterschiedlicher Komponenten in Kraftwerken auf Basis von künstlichen Neuronalen Netzen vorgestellt. Durch Extrapolation des zeitlichen Gütegrad- oder Kostenverlaufs infolge der Zustandsverschlechterung ist es möglich, den optimalen Instandhaltungszeitpunkt einer Komponente zu bestimmen. To minimise costs, it is important to operate power plants optimally at every load requested. For this reason, an early detection of deviations is necessary. In this work, a unified and transferable methodology is introduced for the development and implementation of performance indicators. Based on artificial neural networks, these indicators are used for online condition monitoring. By extrapolating the performance indicator or cost trend due to degradation, it is possible to determine the optimum time for maintenance for the associated component.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.