Optimisation in Signal and Image Processing (eBook, ePUB)
Redaktion: Siarry, Patrick
181,99 €
181,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
181,99 €
Als Download kaufen
181,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
181,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Optimisation in Signal and Image Processing (eBook, ePUB)
Redaktion: Siarry, Patrick
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book describes the optimization methods most commonly encountered in signal and image processing: artificial evolution and Parisian approach; wavelets and fractals; information criteria; training and quadratic programming; Bayesian formalism; probabilistic modeling; Markovian approach; hidden Markov models; and metaheuristics (genetic algorithms, ant colony algorithms, cross-entropy, particle swarm optimization, estimation of distribution algorithms, and artificial immune systems).
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 7.9MB
Andere Kunden interessierten sich auch für
- Information Fusion in Signal and Image Processing (eBook, ePUB)173,99 €
- Machine Learning Algorithms for Signal and Image Processing (eBook, ePUB)123,99 €
- Digital Filters Design for Signal and Image Processing (eBook, ePUB)248,99 €
- Marc PoulyGeneric Inference (eBook, ePUB)111,99 €
- Ajay R. MishraFundamentals of Network Planning and Optimisation 2G/3G/4G (eBook, ePUB)119,99 €
- Shoab Ahmed KhanDigital Design of Signal Processing Systems (eBook, ePUB)107,99 €
- Gérard BlanchetDigital Signal and Image Processing using MATLAB, Volume 2 (eBook, ePUB)139,99 €
-
-
-
This book describes the optimization methods most commonly encountered in signal and image processing: artificial evolution and Parisian approach; wavelets and fractals; information criteria; training and quadratic programming; Bayesian formalism; probabilistic modeling; Markovian approach; hidden Markov models; and metaheuristics (genetic algorithms, ant colony algorithms, cross-entropy, particle swarm optimization, estimation of distribution algorithms, and artificial immune systems).
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley-IEEE Press
- Seitenzahl: 352
- Erscheinungstermin: 1. März 2013
- Englisch
- ISBN-13: 9781118623671
- Artikelnr.: 38244633
- Verlag: Wiley-IEEE Press
- Seitenzahl: 352
- Erscheinungstermin: 1. März 2013
- Englisch
- ISBN-13: 9781118623671
- Artikelnr.: 38244633
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Patrick Siarry is a Professor of Automatics and Informatics at the University of Paris-Est Créteil, where he leads the Image and Signal Processing team in the Laboratoire Images, Signaux et Systèmes Intelligents - LiSSi.
Introduction xiii
Chapter 1. Modeling and Optimization in Image Analysis 1
Jean Louchet
1.1. Modeling at the source of image analysis and synthesis 1
1.2. From image synthesis to analysis 2
1.3. Scene geometric modeling and image synthesis 3
1.4. Direct model inversion and the Hough transform 4
1.5. Optimization and physical modeling 9
1.6. Conclusion 12
1.7. Acknowledgements 13
1.8. Bibliography 13
Chapter 2. Artificial Evolution and the Parisian Approach. Applications in
the Processing of Signals and Images 15
Pierre Collet and Jean Louchet
2.1. Introduction 15
2.2. The Parisian approach for evolutionary algorithms 15
2.3. Applying the Parisian approach to inverse IFS problems 17
2.4. Results obtained on the inverse problems of IFS 20
2.5. Conclusion on the usage of the Parisian approach for inverse IFS
problems 22
2.6. Collective representation: the Parisian approach and the Fly algorithm
23
2.7. Conclusion 40
2.8. Acknowledgements 41
2.9.Bibliography 41
Chapter 3. Wavelets and Fractals for Signal and Image Analysis 45
Abdeldjalil Ouahabi and Djedjiga Ait Aouit
3.1. Introduction 45
3.2. Some general points on fractals 46
3.3. Multifractal analysis of signals 54
3.4. Distribution of singularities based on wavelets 60
3.5. Experiments 70
3.6. Conclusion 76
3.7. Bibliography 76
Chapter 4. Information Criteria: Examples of Applications in Signal and
Image Processing 79
Christian Oliver and Olivier Alata
4.1. Introduction and context 79
4.2. Overview of the different criteria 81
4.3. The case of auto-regressive (AR) models 83
4.4. Applying the process to unsupervised clustering 95
4.5. Law approximation with the help of histograms 98
4.6. Other applications 103
4.7. Conclusion 106
4.8. Appendix 106
4.9. Bibliography 107
Chapter 5. Quadratic Programming and Machine Learning - Large Scale
Problems and Sparsity 111
Gaëlle Looslil, Stéphane Canu
5.1. Introduction 111
5.2. Learning processes and optimization 112
5.3. From learning methods to quadratic programming 117
5.4. Methods and resolution 119
5.5. Experiments 128
5.6. Conclusion 132
5.7. Bibliography 133
Chapter 6. Probabilistic Modeling of Policies and Application to Optimal
Sensor Management 137
Frédéric Dambreville, Francis Celeste and Cécile Simonin
6.1. Continuum, a path toward oblivion 137
6.2. The cross-entropy (CE) method 138
6.3. Examples of implementation of CE for surveillance 146
6.4. Example of implementation of CE for exploration 153
6.5. Optimal control under partial observation 158
6.6. Conclusion 166
6.7. Bibliography 166
Chapter 7. Optimizing Emissions for Tracking and Pursuit of Mobile Targets
169
Jean-Pierre Le Cadre
7.1. Introduction 169
7.2. Elementary modeling of the problem (deterministic case) 170
7.3. Application to the optimization of emissions (deterministic case) 175
7.4. The case of a target with a Markov trajectory 181
7.5. Conclusion 189
7.6. Appendix: monotonous functional matrices 189
7.7. Bibliography 192
Chapter 8. Bayesian Inference and Markov Models 195
Christophe Collet
8.1. Introduction and application framework 195
8.2. Detection, segmentation and classification 196
8.3. General modeling 199
8.4. Segmentation using the causal-in-scale Markov model 201
8.5. Segmentation into three classes 203
8.6. The classification of objects 206
8.7. The classification of seabeds 212
8.8. Conclusion and perspectives 214
8.9. Bibliography 215
Chapter 9. The Use of Hidden Markov Models for Image Recognition: Learning
with Artificial Ants, Genetic Algorithms and Particle Swarm
Optimization 219
Sébastien Aupetit, Nicolas Monmarchè and Mohamed Slimane
9.1. Introduction 219
9.2. Hidden Markov models (HMMs) 220
9.3. Using metaheuristics to learn HMMs 223
9.4. Description, parameter setting and evaluation of the six approaches
that are used to train HMMs 226
9.5. Conclusion 240
9.6. Bibliography 240
Chapter 10. Biological Metaheuristics for Road Sign Detection 245
Guillaume Dutilleux and Pierre Charbonnier
10.1. Introduction 245
10.2. Relationship to existing works 246
10.3. Template and deformations 248
10.4. Estimation problem 248
10.5. Three biological metaheuristics 252
10.6. Experimental results 259
10.7. Conclusion 265
10.8. Bibliography 266
Chapter 11. Metaheuristics for Continuous Variables. The Registration of
Retinal Angiogram Images 269
Johann Drèo, Jean-Claude Nunes and Patrick Siarry
11.1. Introduction 269
11.2. Metaheuristics for difficult optimization problems 270
11.3. Image registration of retinal angiograms 275
11.4. Optimizing the image registration process 279
11.5. Results 288
11.6. Analysis of the results 295
11.7. Conclusion 296
11.8. Acknowledgements 296
11.9. Bibliography 296
Chapter 12. Joint Estimation of the Dynamics and Shape of Physiological
Signals through Genetic Algorithms 301
Amine Naït-Ali and Patrick Siarry
12.1. Introduction 301
12.2. Brainstem Auditory Evoked Potentials (BAEPs) 302
12.3. Processing BAEPs 303
12.4. Genetic algorithms 305
12.5. BAEP dynamics 307
12.6. The non-stationarity of the shape of the BAEPs 324
12.7. Conclusion 327
12.8. Bibliography 327
Chapter 13. Using Interactive Evolutionary Algorithms to Help Fit Cochlear
Implants 329
Pierre Collet, Pierrick Legrand, Claire Bourgeois-République, Vincent Péan
and Bruno Frachet
13.1. Introduction 329
13.2. Choosing an optimization algorithm 333
13.3. Adapting an evolutionary algorithm to the interactive fitting of
cochlear implants 335
13.4. Evaluation 338
13.5. Experiments 339
13.6. Medical issues which were raised during the experiments 350
13.7. Algorithmic conclusions for patient A 352
13.8. Conclusion 354
13.9. Bibliography 354
List of Authors 357
Index 359
Chapter 1. Modeling and Optimization in Image Analysis 1
Jean Louchet
1.1. Modeling at the source of image analysis and synthesis 1
1.2. From image synthesis to analysis 2
1.3. Scene geometric modeling and image synthesis 3
1.4. Direct model inversion and the Hough transform 4
1.5. Optimization and physical modeling 9
1.6. Conclusion 12
1.7. Acknowledgements 13
1.8. Bibliography 13
Chapter 2. Artificial Evolution and the Parisian Approach. Applications in
the Processing of Signals and Images 15
Pierre Collet and Jean Louchet
2.1. Introduction 15
2.2. The Parisian approach for evolutionary algorithms 15
2.3. Applying the Parisian approach to inverse IFS problems 17
2.4. Results obtained on the inverse problems of IFS 20
2.5. Conclusion on the usage of the Parisian approach for inverse IFS
problems 22
2.6. Collective representation: the Parisian approach and the Fly algorithm
23
2.7. Conclusion 40
2.8. Acknowledgements 41
2.9.Bibliography 41
Chapter 3. Wavelets and Fractals for Signal and Image Analysis 45
Abdeldjalil Ouahabi and Djedjiga Ait Aouit
3.1. Introduction 45
3.2. Some general points on fractals 46
3.3. Multifractal analysis of signals 54
3.4. Distribution of singularities based on wavelets 60
3.5. Experiments 70
3.6. Conclusion 76
3.7. Bibliography 76
Chapter 4. Information Criteria: Examples of Applications in Signal and
Image Processing 79
Christian Oliver and Olivier Alata
4.1. Introduction and context 79
4.2. Overview of the different criteria 81
4.3. The case of auto-regressive (AR) models 83
4.4. Applying the process to unsupervised clustering 95
4.5. Law approximation with the help of histograms 98
4.6. Other applications 103
4.7. Conclusion 106
4.8. Appendix 106
4.9. Bibliography 107
Chapter 5. Quadratic Programming and Machine Learning - Large Scale
Problems and Sparsity 111
Gaëlle Looslil, Stéphane Canu
5.1. Introduction 111
5.2. Learning processes and optimization 112
5.3. From learning methods to quadratic programming 117
5.4. Methods and resolution 119
5.5. Experiments 128
5.6. Conclusion 132
5.7. Bibliography 133
Chapter 6. Probabilistic Modeling of Policies and Application to Optimal
Sensor Management 137
Frédéric Dambreville, Francis Celeste and Cécile Simonin
6.1. Continuum, a path toward oblivion 137
6.2. The cross-entropy (CE) method 138
6.3. Examples of implementation of CE for surveillance 146
6.4. Example of implementation of CE for exploration 153
6.5. Optimal control under partial observation 158
6.6. Conclusion 166
6.7. Bibliography 166
Chapter 7. Optimizing Emissions for Tracking and Pursuit of Mobile Targets
169
Jean-Pierre Le Cadre
7.1. Introduction 169
7.2. Elementary modeling of the problem (deterministic case) 170
7.3. Application to the optimization of emissions (deterministic case) 175
7.4. The case of a target with a Markov trajectory 181
7.5. Conclusion 189
7.6. Appendix: monotonous functional matrices 189
7.7. Bibliography 192
Chapter 8. Bayesian Inference and Markov Models 195
Christophe Collet
8.1. Introduction and application framework 195
8.2. Detection, segmentation and classification 196
8.3. General modeling 199
8.4. Segmentation using the causal-in-scale Markov model 201
8.5. Segmentation into three classes 203
8.6. The classification of objects 206
8.7. The classification of seabeds 212
8.8. Conclusion and perspectives 214
8.9. Bibliography 215
Chapter 9. The Use of Hidden Markov Models for Image Recognition: Learning
with Artificial Ants, Genetic Algorithms and Particle Swarm
Optimization 219
Sébastien Aupetit, Nicolas Monmarchè and Mohamed Slimane
9.1. Introduction 219
9.2. Hidden Markov models (HMMs) 220
9.3. Using metaheuristics to learn HMMs 223
9.4. Description, parameter setting and evaluation of the six approaches
that are used to train HMMs 226
9.5. Conclusion 240
9.6. Bibliography 240
Chapter 10. Biological Metaheuristics for Road Sign Detection 245
Guillaume Dutilleux and Pierre Charbonnier
10.1. Introduction 245
10.2. Relationship to existing works 246
10.3. Template and deformations 248
10.4. Estimation problem 248
10.5. Three biological metaheuristics 252
10.6. Experimental results 259
10.7. Conclusion 265
10.8. Bibliography 266
Chapter 11. Metaheuristics for Continuous Variables. The Registration of
Retinal Angiogram Images 269
Johann Drèo, Jean-Claude Nunes and Patrick Siarry
11.1. Introduction 269
11.2. Metaheuristics for difficult optimization problems 270
11.3. Image registration of retinal angiograms 275
11.4. Optimizing the image registration process 279
11.5. Results 288
11.6. Analysis of the results 295
11.7. Conclusion 296
11.8. Acknowledgements 296
11.9. Bibliography 296
Chapter 12. Joint Estimation of the Dynamics and Shape of Physiological
Signals through Genetic Algorithms 301
Amine Naït-Ali and Patrick Siarry
12.1. Introduction 301
12.2. Brainstem Auditory Evoked Potentials (BAEPs) 302
12.3. Processing BAEPs 303
12.4. Genetic algorithms 305
12.5. BAEP dynamics 307
12.6. The non-stationarity of the shape of the BAEPs 324
12.7. Conclusion 327
12.8. Bibliography 327
Chapter 13. Using Interactive Evolutionary Algorithms to Help Fit Cochlear
Implants 329
Pierre Collet, Pierrick Legrand, Claire Bourgeois-République, Vincent Péan
and Bruno Frachet
13.1. Introduction 329
13.2. Choosing an optimization algorithm 333
13.3. Adapting an evolutionary algorithm to the interactive fitting of
cochlear implants 335
13.4. Evaluation 338
13.5. Experiments 339
13.6. Medical issues which were raised during the experiments 350
13.7. Algorithmic conclusions for patient A 352
13.8. Conclusion 354
13.9. Bibliography 354
List of Authors 357
Index 359
Introduction xiii
Chapter 1. Modeling and Optimization in Image Analysis 1
Jean Louchet
1.1. Modeling at the source of image analysis and synthesis 1
1.2. From image synthesis to analysis 2
1.3. Scene geometric modeling and image synthesis 3
1.4. Direct model inversion and the Hough transform 4
1.5. Optimization and physical modeling 9
1.6. Conclusion 12
1.7. Acknowledgements 13
1.8. Bibliography 13
Chapter 2. Artificial Evolution and the Parisian Approach. Applications in
the Processing of Signals and Images 15
Pierre Collet and Jean Louchet
2.1. Introduction 15
2.2. The Parisian approach for evolutionary algorithms 15
2.3. Applying the Parisian approach to inverse IFS problems 17
2.4. Results obtained on the inverse problems of IFS 20
2.5. Conclusion on the usage of the Parisian approach for inverse IFS
problems 22
2.6. Collective representation: the Parisian approach and the Fly algorithm
23
2.7. Conclusion 40
2.8. Acknowledgements 41
2.9.Bibliography 41
Chapter 3. Wavelets and Fractals for Signal and Image Analysis 45
Abdeldjalil Ouahabi and Djedjiga Ait Aouit
3.1. Introduction 45
3.2. Some general points on fractals 46
3.3. Multifractal analysis of signals 54
3.4. Distribution of singularities based on wavelets 60
3.5. Experiments 70
3.6. Conclusion 76
3.7. Bibliography 76
Chapter 4. Information Criteria: Examples of Applications in Signal and
Image Processing 79
Christian Oliver and Olivier Alata
4.1. Introduction and context 79
4.2. Overview of the different criteria 81
4.3. The case of auto-regressive (AR) models 83
4.4. Applying the process to unsupervised clustering 95
4.5. Law approximation with the help of histograms 98
4.6. Other applications 103
4.7. Conclusion 106
4.8. Appendix 106
4.9. Bibliography 107
Chapter 5. Quadratic Programming and Machine Learning - Large Scale
Problems and Sparsity 111
Gaëlle Looslil, Stéphane Canu
5.1. Introduction 111
5.2. Learning processes and optimization 112
5.3. From learning methods to quadratic programming 117
5.4. Methods and resolution 119
5.5. Experiments 128
5.6. Conclusion 132
5.7. Bibliography 133
Chapter 6. Probabilistic Modeling of Policies and Application to Optimal
Sensor Management 137
Frédéric Dambreville, Francis Celeste and Cécile Simonin
6.1. Continuum, a path toward oblivion 137
6.2. The cross-entropy (CE) method 138
6.3. Examples of implementation of CE for surveillance 146
6.4. Example of implementation of CE for exploration 153
6.5. Optimal control under partial observation 158
6.6. Conclusion 166
6.7. Bibliography 166
Chapter 7. Optimizing Emissions for Tracking and Pursuit of Mobile Targets
169
Jean-Pierre Le Cadre
7.1. Introduction 169
7.2. Elementary modeling of the problem (deterministic case) 170
7.3. Application to the optimization of emissions (deterministic case) 175
7.4. The case of a target with a Markov trajectory 181
7.5. Conclusion 189
7.6. Appendix: monotonous functional matrices 189
7.7. Bibliography 192
Chapter 8. Bayesian Inference and Markov Models 195
Christophe Collet
8.1. Introduction and application framework 195
8.2. Detection, segmentation and classification 196
8.3. General modeling 199
8.4. Segmentation using the causal-in-scale Markov model 201
8.5. Segmentation into three classes 203
8.6. The classification of objects 206
8.7. The classification of seabeds 212
8.8. Conclusion and perspectives 214
8.9. Bibliography 215
Chapter 9. The Use of Hidden Markov Models for Image Recognition: Learning
with Artificial Ants, Genetic Algorithms and Particle Swarm
Optimization 219
Sébastien Aupetit, Nicolas Monmarchè and Mohamed Slimane
9.1. Introduction 219
9.2. Hidden Markov models (HMMs) 220
9.3. Using metaheuristics to learn HMMs 223
9.4. Description, parameter setting and evaluation of the six approaches
that are used to train HMMs 226
9.5. Conclusion 240
9.6. Bibliography 240
Chapter 10. Biological Metaheuristics for Road Sign Detection 245
Guillaume Dutilleux and Pierre Charbonnier
10.1. Introduction 245
10.2. Relationship to existing works 246
10.3. Template and deformations 248
10.4. Estimation problem 248
10.5. Three biological metaheuristics 252
10.6. Experimental results 259
10.7. Conclusion 265
10.8. Bibliography 266
Chapter 11. Metaheuristics for Continuous Variables. The Registration of
Retinal Angiogram Images 269
Johann Drèo, Jean-Claude Nunes and Patrick Siarry
11.1. Introduction 269
11.2. Metaheuristics for difficult optimization problems 270
11.3. Image registration of retinal angiograms 275
11.4. Optimizing the image registration process 279
11.5. Results 288
11.6. Analysis of the results 295
11.7. Conclusion 296
11.8. Acknowledgements 296
11.9. Bibliography 296
Chapter 12. Joint Estimation of the Dynamics and Shape of Physiological
Signals through Genetic Algorithms 301
Amine Naït-Ali and Patrick Siarry
12.1. Introduction 301
12.2. Brainstem Auditory Evoked Potentials (BAEPs) 302
12.3. Processing BAEPs 303
12.4. Genetic algorithms 305
12.5. BAEP dynamics 307
12.6. The non-stationarity of the shape of the BAEPs 324
12.7. Conclusion 327
12.8. Bibliography 327
Chapter 13. Using Interactive Evolutionary Algorithms to Help Fit Cochlear
Implants 329
Pierre Collet, Pierrick Legrand, Claire Bourgeois-République, Vincent Péan
and Bruno Frachet
13.1. Introduction 329
13.2. Choosing an optimization algorithm 333
13.3. Adapting an evolutionary algorithm to the interactive fitting of
cochlear implants 335
13.4. Evaluation 338
13.5. Experiments 339
13.6. Medical issues which were raised during the experiments 350
13.7. Algorithmic conclusions for patient A 352
13.8. Conclusion 354
13.9. Bibliography 354
List of Authors 357
Index 359
Chapter 1. Modeling and Optimization in Image Analysis 1
Jean Louchet
1.1. Modeling at the source of image analysis and synthesis 1
1.2. From image synthesis to analysis 2
1.3. Scene geometric modeling and image synthesis 3
1.4. Direct model inversion and the Hough transform 4
1.5. Optimization and physical modeling 9
1.6. Conclusion 12
1.7. Acknowledgements 13
1.8. Bibliography 13
Chapter 2. Artificial Evolution and the Parisian Approach. Applications in
the Processing of Signals and Images 15
Pierre Collet and Jean Louchet
2.1. Introduction 15
2.2. The Parisian approach for evolutionary algorithms 15
2.3. Applying the Parisian approach to inverse IFS problems 17
2.4. Results obtained on the inverse problems of IFS 20
2.5. Conclusion on the usage of the Parisian approach for inverse IFS
problems 22
2.6. Collective representation: the Parisian approach and the Fly algorithm
23
2.7. Conclusion 40
2.8. Acknowledgements 41
2.9.Bibliography 41
Chapter 3. Wavelets and Fractals for Signal and Image Analysis 45
Abdeldjalil Ouahabi and Djedjiga Ait Aouit
3.1. Introduction 45
3.2. Some general points on fractals 46
3.3. Multifractal analysis of signals 54
3.4. Distribution of singularities based on wavelets 60
3.5. Experiments 70
3.6. Conclusion 76
3.7. Bibliography 76
Chapter 4. Information Criteria: Examples of Applications in Signal and
Image Processing 79
Christian Oliver and Olivier Alata
4.1. Introduction and context 79
4.2. Overview of the different criteria 81
4.3. The case of auto-regressive (AR) models 83
4.4. Applying the process to unsupervised clustering 95
4.5. Law approximation with the help of histograms 98
4.6. Other applications 103
4.7. Conclusion 106
4.8. Appendix 106
4.9. Bibliography 107
Chapter 5. Quadratic Programming and Machine Learning - Large Scale
Problems and Sparsity 111
Gaëlle Looslil, Stéphane Canu
5.1. Introduction 111
5.2. Learning processes and optimization 112
5.3. From learning methods to quadratic programming 117
5.4. Methods and resolution 119
5.5. Experiments 128
5.6. Conclusion 132
5.7. Bibliography 133
Chapter 6. Probabilistic Modeling of Policies and Application to Optimal
Sensor Management 137
Frédéric Dambreville, Francis Celeste and Cécile Simonin
6.1. Continuum, a path toward oblivion 137
6.2. The cross-entropy (CE) method 138
6.3. Examples of implementation of CE for surveillance 146
6.4. Example of implementation of CE for exploration 153
6.5. Optimal control under partial observation 158
6.6. Conclusion 166
6.7. Bibliography 166
Chapter 7. Optimizing Emissions for Tracking and Pursuit of Mobile Targets
169
Jean-Pierre Le Cadre
7.1. Introduction 169
7.2. Elementary modeling of the problem (deterministic case) 170
7.3. Application to the optimization of emissions (deterministic case) 175
7.4. The case of a target with a Markov trajectory 181
7.5. Conclusion 189
7.6. Appendix: monotonous functional matrices 189
7.7. Bibliography 192
Chapter 8. Bayesian Inference and Markov Models 195
Christophe Collet
8.1. Introduction and application framework 195
8.2. Detection, segmentation and classification 196
8.3. General modeling 199
8.4. Segmentation using the causal-in-scale Markov model 201
8.5. Segmentation into three classes 203
8.6. The classification of objects 206
8.7. The classification of seabeds 212
8.8. Conclusion and perspectives 214
8.9. Bibliography 215
Chapter 9. The Use of Hidden Markov Models for Image Recognition: Learning
with Artificial Ants, Genetic Algorithms and Particle Swarm
Optimization 219
Sébastien Aupetit, Nicolas Monmarchè and Mohamed Slimane
9.1. Introduction 219
9.2. Hidden Markov models (HMMs) 220
9.3. Using metaheuristics to learn HMMs 223
9.4. Description, parameter setting and evaluation of the six approaches
that are used to train HMMs 226
9.5. Conclusion 240
9.6. Bibliography 240
Chapter 10. Biological Metaheuristics for Road Sign Detection 245
Guillaume Dutilleux and Pierre Charbonnier
10.1. Introduction 245
10.2. Relationship to existing works 246
10.3. Template and deformations 248
10.4. Estimation problem 248
10.5. Three biological metaheuristics 252
10.6. Experimental results 259
10.7. Conclusion 265
10.8. Bibliography 266
Chapter 11. Metaheuristics for Continuous Variables. The Registration of
Retinal Angiogram Images 269
Johann Drèo, Jean-Claude Nunes and Patrick Siarry
11.1. Introduction 269
11.2. Metaheuristics for difficult optimization problems 270
11.3. Image registration of retinal angiograms 275
11.4. Optimizing the image registration process 279
11.5. Results 288
11.6. Analysis of the results 295
11.7. Conclusion 296
11.8. Acknowledgements 296
11.9. Bibliography 296
Chapter 12. Joint Estimation of the Dynamics and Shape of Physiological
Signals through Genetic Algorithms 301
Amine Naït-Ali and Patrick Siarry
12.1. Introduction 301
12.2. Brainstem Auditory Evoked Potentials (BAEPs) 302
12.3. Processing BAEPs 303
12.4. Genetic algorithms 305
12.5. BAEP dynamics 307
12.6. The non-stationarity of the shape of the BAEPs 324
12.7. Conclusion 327
12.8. Bibliography 327
Chapter 13. Using Interactive Evolutionary Algorithms to Help Fit Cochlear
Implants 329
Pierre Collet, Pierrick Legrand, Claire Bourgeois-République, Vincent Péan
and Bruno Frachet
13.1. Introduction 329
13.2. Choosing an optimization algorithm 333
13.3. Adapting an evolutionary algorithm to the interactive fitting of
cochlear implants 335
13.4. Evaluation 338
13.5. Experiments 339
13.6. Medical issues which were raised during the experiments 350
13.7. Algorithmic conclusions for patient A 352
13.8. Conclusion 354
13.9. Bibliography 354
List of Authors 357
Index 359