Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put,…mehr
Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?
Reading the Black-Scholes Formula in Terms of First and Last Passage Times.- Generalized Black-Scholes Formulae for Martingales, in Terms of Last Passage Times.- Representation of some particular Azéma supermartingales.- An Interesting Family of Black-Scholes Perpetuities.- Study of Last Passage Times up to a Finite Horizon.- Put Option as Joint Distribution Function in Strike and Maturity.- Existence and Properties of Pseudo-Inverses for Bessel and Related Processes.- Existence of Pseudo-Inverses for Diffusions.
Reading the Black-Scholes Formula in Terms of First and Last Passage Times.- Generalized Black-Scholes Formulae for Martingales, in Terms of Last Passage Times.- Representation of some particular Azéma supermartingales.- An Interesting Family of Black-Scholes Perpetuities.- Study of Last Passage Times up to a Finite Horizon.- Put Option as Joint Distribution Function in Strike and Maturity.- Existence and Properties of Pseudo-Inverses for Bessel and Related Processes.- Existence of Pseudo-Inverses for Diffusions.
Reading the Black-Scholes Formula in Terms of First and Last Passage Times.- Generalized Black-Scholes Formulae for Martingales, in Terms of Last Passage Times.- Representation of some particular Azéma supermartingales.- An Interesting Family of Black-Scholes Perpetuities.- Study of Last Passage Times up to a Finite Horizon.- Put Option as Joint Distribution Function in Strike and Maturity.- Existence and Properties of Pseudo-Inverses for Bessel and Related Processes.- Existence of Pseudo-Inverses for Diffusions.
Reading the Black-Scholes Formula in Terms of First and Last Passage Times.- Generalized Black-Scholes Formulae for Martingales, in Terms of Last Passage Times.- Representation of some particular Azéma supermartingales.- An Interesting Family of Black-Scholes Perpetuities.- Study of Last Passage Times up to a Finite Horizon.- Put Option as Joint Distribution Function in Strike and Maturity.- Existence and Properties of Pseudo-Inverses for Bessel and Related Processes.- Existence of Pseudo-Inverses for Diffusions.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497