Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Finite type implies isolated singularity.- Normal integral bases and embeddings of fields.- Brauer-severi schemes of orders.- A survey of analytic methods in noncommutative number theory.- The variety of a module.- Crossed product orders and wild ramification.- Self-duality over the maximal order and torsion galois modules.- Representation types of group rings over complete discrete valuation rings II.- Tame representations, local principal orders and local Weil groups.- Modules under ground ring extension.- The merkurjev-suslin theorem.- Galois theory and primality testing.- Stickelberger ideals, monoid rings, and galois module structure.- The schur group.- Projective class groups of integral group rings: a survey.- Module valuations and representations of completely reducible orders.- Galois descent and class groups of orders.- The isomorphism problem for group rings: A survey.- Relative galois module structure of rings of integers.
Finite type implies isolated singularity.- Normal integral bases and embeddings of fields.- Brauer-severi schemes of orders.- A survey of analytic methods in noncommutative number theory.- The variety of a module.- Crossed product orders and wild ramification.- Self-duality over the maximal order and torsion galois modules.- Representation types of group rings over complete discrete valuation rings II.- Tame representations, local principal orders and local Weil groups.- Modules under ground ring extension.- The merkurjev-suslin theorem.- Galois theory and primality testing.- Stickelberger ideals, monoid rings, and galois module structure.- The schur group.- Projective class groups of integral group rings: a survey.- Module valuations and representations of completely reducible orders.- Galois descent and class groups of orders.- The isomorphism problem for group rings: A survey.- Relative galois module structure of rings of integers.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497