Orthogonal Functions (eBook, PDF)
Moment Theory and Continued Fractions
Redaktion: Jones, William; Ranga, A. Sri
183,95 €
183,95 €
inkl. MwSt.
Sofort per Download lieferbar
92 °P sammeln
183,95 €
Als Download kaufen
183,95 €
inkl. MwSt.
Sofort per Download lieferbar
92 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
183,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
92 °P sammeln
Orthogonal Functions (eBook, PDF)
Moment Theory and Continued Fractions
Redaktion: Jones, William; Ranga, A. Sri
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Outlines an array of work on the analytic theory and potential applications of continued fractions, linear functionals, orthogonal functions, moment theory, and integral transforms. This work describes links between continued fractions, Pade approximation, special functions, and Gaussian quadrature.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 29.15MB
Andere Kunden interessierten sich auch für
- Special Functions and Analysis of Differential Equations (eBook, PDF)52,95 €
- Helmut BezQuantum Computation (eBook, PDF)81,95 €
- Bilal AyyubNumerical Analysis for Engineers (eBook, PDF)115,95 €
- R. W. FarebrotherLinear Least Squares Computations (eBook, PDF)172,95 €
- Francisco J. SayasVariational Techniques for Elliptic Partial Differential Equations (eBook, PDF)48,95 €
- Changpin LiNumerical Methods for Fractional Calculus (eBook, PDF)48,95 €
- William BoberIntroduction to Numerical and Analytical Methods with MATLAB for Engineers and Scientists (eBook, PDF)141,95 €
-
-
-
Outlines an array of work on the analytic theory and potential applications of continued fractions, linear functionals, orthogonal functions, moment theory, and integral transforms. This work describes links between continued fractions, Pade approximation, special functions, and Gaussian quadrature.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 440
- Erscheinungstermin: 22. Dezember 2020
- Englisch
- ISBN-13: 9781000117127
- Artikelnr.: 60802327
- Verlag: Taylor & Francis
- Seitenzahl: 440
- Erscheinungstermin: 22. Dezember 2020
- Englisch
- ISBN-13: 9781000117127
- Artikelnr.: 60802327
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
WILLIAM B. JONES is Professor Emeritus of Mathematics at the University of Colorado. He is the author or coauthor of more than 190 research papers, abstracts, and invited lectures. Dr. Jones is a member of the American Mathematical Society, the Mathematical Association of America, the Society for Industrial and Applied Mathematics, and the American Association of University Professors. He received the B.A. degree (1953) from Jacksonville State University, Alabama, and the M.A. (1955) and Ph.D. (1963) degrees from Vanderbilt University, Nashville, Tennessee. A. SRI RANGA is Professor of Numerical Analysis in the Departamento de Ciencias de Computa
Chebyshev-Laurent polynomials and weighted approximation; natural solutions
of indeterminate strong Stieltjes moment problems derived from
PC-fractions; a class of indeterminate strong Stieltjes moment problems
with discrete distributions; symmetric orthogonal L-polynomials in the
complex plane; continued fractions and orthogonal rational functions;
interpolation of Nevanlinna functions by rationals with poles on the real
line; symmetric orthogonal Laurent polynomials; interpolating Laurent
polynomials; computation of the gamma and Binet functions by Stieltjes
continued fractions; formulas for the moments of some strong moment
distributions; orthogonal Laurent polynomials of Jacobi, Hermite and
Laguerre types; regular strong Hamburger moment problems; asymptotic
behaviour of the continued fraction coefficients of a class of Stieltjes
transforms, including the Binet function; uniformity and speed of
convergence of complex continued fractions K(an/1); separation theorem of
Chebyshev-Markov-Stieltjes type for Laurent polynomials orthogonal on (0,
alpha); orthogonal polynomials associated with a non-diagonal Sobolev inner
product with polynomial coefficients; remarks on canonical solutions of
strong moment problems; Sobolev orthogonality and properties of the
generalized Laguerre polynomials; a combination of two methods in frequency
analysis -the R(N)-process; zeros of Szego polynomials used in frequency
analysis; some probabilistic remarks on the boundary version of Worpitzky's
theorem.
of indeterminate strong Stieltjes moment problems derived from
PC-fractions; a class of indeterminate strong Stieltjes moment problems
with discrete distributions; symmetric orthogonal L-polynomials in the
complex plane; continued fractions and orthogonal rational functions;
interpolation of Nevanlinna functions by rationals with poles on the real
line; symmetric orthogonal Laurent polynomials; interpolating Laurent
polynomials; computation of the gamma and Binet functions by Stieltjes
continued fractions; formulas for the moments of some strong moment
distributions; orthogonal Laurent polynomials of Jacobi, Hermite and
Laguerre types; regular strong Hamburger moment problems; asymptotic
behaviour of the continued fraction coefficients of a class of Stieltjes
transforms, including the Binet function; uniformity and speed of
convergence of complex continued fractions K(an/1); separation theorem of
Chebyshev-Markov-Stieltjes type for Laurent polynomials orthogonal on (0,
alpha); orthogonal polynomials associated with a non-diagonal Sobolev inner
product with polynomial coefficients; remarks on canonical solutions of
strong moment problems; Sobolev orthogonality and properties of the
generalized Laguerre polynomials; a combination of two methods in frequency
analysis -the R(N)-process; zeros of Szego polynomials used in frequency
analysis; some probabilistic remarks on the boundary version of Worpitzky's
theorem.
Chebyshev-Laurent polynomials and weighted approximation; natural solutions
of indeterminate strong Stieltjes moment problems derived from
PC-fractions; a class of indeterminate strong Stieltjes moment problems
with discrete distributions; symmetric orthogonal L-polynomials in the
complex plane; continued fractions and orthogonal rational functions;
interpolation of Nevanlinna functions by rationals with poles on the real
line; symmetric orthogonal Laurent polynomials; interpolating Laurent
polynomials; computation of the gamma and Binet functions by Stieltjes
continued fractions; formulas for the moments of some strong moment
distributions; orthogonal Laurent polynomials of Jacobi, Hermite and
Laguerre types; regular strong Hamburger moment problems; asymptotic
behaviour of the continued fraction coefficients of a class of Stieltjes
transforms, including the Binet function; uniformity and speed of
convergence of complex continued fractions K(an/1); separation theorem of
Chebyshev-Markov-Stieltjes type for Laurent polynomials orthogonal on (0,
alpha); orthogonal polynomials associated with a non-diagonal Sobolev inner
product with polynomial coefficients; remarks on canonical solutions of
strong moment problems; Sobolev orthogonality and properties of the
generalized Laguerre polynomials; a combination of two methods in frequency
analysis -the R(N)-process; zeros of Szego polynomials used in frequency
analysis; some probabilistic remarks on the boundary version of Worpitzky's
theorem.
of indeterminate strong Stieltjes moment problems derived from
PC-fractions; a class of indeterminate strong Stieltjes moment problems
with discrete distributions; symmetric orthogonal L-polynomials in the
complex plane; continued fractions and orthogonal rational functions;
interpolation of Nevanlinna functions by rationals with poles on the real
line; symmetric orthogonal Laurent polynomials; interpolating Laurent
polynomials; computation of the gamma and Binet functions by Stieltjes
continued fractions; formulas for the moments of some strong moment
distributions; orthogonal Laurent polynomials of Jacobi, Hermite and
Laguerre types; regular strong Hamburger moment problems; asymptotic
behaviour of the continued fraction coefficients of a class of Stieltjes
transforms, including the Binet function; uniformity and speed of
convergence of complex continued fractions K(an/1); separation theorem of
Chebyshev-Markov-Stieltjes type for Laurent polynomials orthogonal on (0,
alpha); orthogonal polynomials associated with a non-diagonal Sobolev inner
product with polynomial coefficients; remarks on canonical solutions of
strong moment problems; Sobolev orthogonality and properties of the
generalized Laguerre polynomials; a combination of two methods in frequency
analysis -the R(N)-process; zeros of Szego polynomials used in frequency
analysis; some probabilistic remarks on the boundary version of Worpitzky's
theorem.