142,99 €
142,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
142,99 €
142,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
142,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
142,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

This truly needed reference presents comprehensively every aspect about this emerging topic: Chapters about the design of dissipative self-assemblies, out-of-equilibrium chemical systems and oscillators and many more topics make this book an indispensable source.

Produktbeschreibung
This truly needed reference presents comprehensively every aspect about this emerging topic: Chapters about the design of dissipative self-assemblies, out-of-equilibrium chemical systems and oscillators and many more topics make this book an indispensable source.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Nicolas Giuseppone is Distinguished Professor of Chemistry (Classe Exceptionelle) at the University of Strasbourg since 2016. He received his PhD in asymmetric catalysis (laboratory of Prof. H.B. Kagan, University of Orsay, France), performed a post-doctoral research in total synthesis (laboratory of Prof. K.C. Nicolaou, The Scripps Research Institute, La Jolla CA, USA), and entered the field of supramolecular chemistry as a CNRS researcher (laboratory of Prof. J.-M. Lehn, University of Strasbourg, France). He started his own research group in 2008, and was nominated as a member of the Institut Universitaire de France (IUF) in 2013. His research interests are focused on supramolecular chemistry, molecular machines, and functional materials. Andreas Walther is a Professor at the Department of Chemistry at the University of Mainz (Germany). His research interests concentrate on developing and understanding hierarchical self-assembly concepts inside and outside equilibrium, and on using them to create active, adaptive and autonomous bioinspired material systems. He graduated from Bayreuth University in Germany in 2008 with a PhD focusing on the self- assembly behavior and applications of Janus particles and other soft, complex colloids. After a post-doctoral stay with a focus on biomimetic hybrid materials at Aalto University (Helsinki, Finland), he held positions at the Leibniz Institute for Interactive Materials in Aachen and the University of Freiburg, where he reoriented his research towards life-inspired materials systems. In 2020 he has been appointed to the present position supported by the Gutenberg Research College.