Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This truly needed reference presents comprehensively every aspect about this emerging topic: Chapters about the design of dissipative self-assemblies, out-of-equilibrium chemical systems and oscillators and many more topics make this book an indispensable source.
This truly needed reference presents comprehensively every aspect about this emerging topic: Chapters about the design of dissipative self-assemblies, out-of-equilibrium chemical systems and oscillators and many more topics make this book an indispensable source.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Nicolas Giuseppone is Distinguished Professor of Chemistry (Classe Exceptionelle) at the University of Strasbourg since 2016. He received his PhD in asymmetric catalysis (laboratory of Prof. H.B. Kagan, University of Orsay, France), performed a post-doctoral research in total synthesis (laboratory of Prof. K.C. Nicolaou, The Scripps Research Institute, La Jolla CA, USA), and entered the field of supramolecular chemistry as a CNRS researcher (laboratory of Prof. J.-M. Lehn, University of Strasbourg, France). He started his own research group in 2008, and was nominated as a member of the Institut Universitaire de France (IUF) in 2013. His research interests are focused on supramolecular chemistry, molecular machines, and functional materials. Andreas Walther is a Professor at the Department of Chemistry at the University of Mainz (Germany). His research interests concentrate on developing and understanding hierarchical self-assembly concepts inside and outside equilibrium, and on using them to create active, adaptive and autonomous bioinspired material systems. He graduated from Bayreuth University in Germany in 2008 with a PhD focusing on the self- assembly behavior and applications of Janus particles and other soft, complex colloids. After a post-doctoral stay with a focus on biomimetic hybrid materials at Aalto University (Helsinki, Finland), he held positions at the Leibniz Institute for Interactive Materials in Aachen and the University of Freiburg, where he reoriented his research towards life-inspired materials systems. In 2020 he has been appointed to the present position supported by the Gutenberg Research College.
Inhaltsangabe
Out-of-equilibrium (supra)molecular systems and materials: An introduction Learning from embryo development to engineer self-organizing materials From clocks to synchrony: the design of bioinspired self-regulation in chemical systems De novo design of chemical reaction networks and oscillators and their relation to emergent properties Kinetically controlled supramolecular polymerization Chemically fueled, transient supramolecular polymers Design of chemical fuel driven self-assembly processes Dynamic combinatorial chemistry out-of-equilibrium Controlling self-assembly of nanoparticles using light Photoswitchable components to drive molecular systems away from global thermodynamic minimum by light. Out-of-equilibrium threaded and interlocked molecular structures Light-driven rotary molecular motors for out-of-equilibrium systems Design of active nanosystems incorporating biomolecular motors Index
Out-of-equilibrium (supra)molecular systems and materials: An introduction Learning from embryo development to engineer self-organizing materials From clocks to synchrony: the design of bioinspired self-regulation in chemical systems De novo design of chemical reaction networks and oscillators and their relation to emergent properties Kinetically controlled supramolecular polymerization Chemically fueled, transient supramolecular polymers Design of chemical fuel driven self-assembly processes Dynamic combinatorial chemistry out-of-equilibrium Controlling self-assembly of nanoparticles using light Photoswitchable components to drive molecular systems away from global thermodynamic minimum by light. Out-of-equilibrium threaded and interlocked molecular structures Light-driven rotary molecular motors for out-of-equilibrium systems Design of active nanosystems incorporating biomolecular motors Index
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497