29,99 €
29,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
29,99 €
29,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
29,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
29,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

This book is essential for aspiring data scientists and anyone needing to perform data cleaning using Pandas and NumPy. It offers numerous code samples and comprehensive coverage of NumPy and Pandas features, including writing regular expressions. Chapter 3 introduces fundamental statistical concepts, while Chapter 7 delves into data visualization using Matplotlib and Seaborn. Companion files with code are available for download from the publisher.
Starting with an introduction to Python, the course progresses through working with data, and then moves into Pandas, covering its
…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 2.6MB
  • FamilySharing(5)
Produktbeschreibung
This book is essential for aspiring data scientists and anyone needing to perform data cleaning using Pandas and NumPy. It offers numerous code samples and comprehensive coverage of NumPy and Pandas features, including writing regular expressions. Chapter 3 introduces fundamental statistical concepts, while Chapter 7 delves into data visualization using Matplotlib and Seaborn. Companion files with code are available for download from the publisher.
Starting with an introduction to Python, the course progresses through working with data, and then moves into Pandas, covering its functionalities in three detailed chapters. The statistical concepts provided are crucial for analyzing data effectively, while the visualization techniques enhance the ability to present data insights clearly.
By the end of this course, users will have a solid foundation in data manipulation and cleaning, statistical analysis, and data visualization, enabling them to tackle real-world data science tasks confidently and efficiently.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Campesato Oswald : Oswald Campesato (San Francisco, CA) is an adjunct instructor at UC-Santa Clara and specializes in Deep Learning, Java, Android, TensorFlow, and NLP. He is the author/co-author of over twenty-five books including TensorFlow 2 Pocket Primer, Python 3 for Machine Learning, and the NLP Using R Pocket Primer (all Mercury Learning and Information).