23,95 €
23,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
12 °P sammeln
23,95 €
23,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
12 °P sammeln
Als Download kaufen
23,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
12 °P sammeln
Jetzt verschenken
23,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
12 °P sammeln
  • Format: ePub

The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python
Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.
Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if
…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 36.12MB
Produktbeschreibung
The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python

Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.

Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you're new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems.

Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes.

Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem.

  • Work with DataFrames and Series, and import or export data
  • Create plots with matplotlib, seaborn, and pandas
  • Combine datasets and handle missing data
  • Reshape, tidy, and clean datasets so they're easier to work with
  • Convert data types and manipulate text strings
  • Apply functions to scale data manipulations
  • Aggregate, transform, and filter large datasets with groupby
  • Leverage Pandas' advanced date and time capabilities
  • Fit linear models using statsmodels and scikit-learn libraries
  • Use generalized linear modeling to fit models with different response variables
  • Compare multiple models to select the "best"
  • Regularize to overcome overfitting and improve performance
  • Use clustering in unsupervised machine learning



Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Daniel Y. Chen is a data engineer and research associate at the Social and Decision Analytics Laboratory, a leading laboratory of the Biocomplexity Institute of Virginia Tech. He is also pursuing a Ph.D. in the interdisciplinary program in Genetics, Bioinformatics & Computational Biology (GBCB), and is involved with The Carpentries (formerly Software and Data Carpentry) as an instructor and lesson maintainer. He is an instructor for DataCamp and is a data scientist at Lander Analytics. Chen holds a master's degree in public health from Columbia University's Mailman School of Public Health in epidemiology, where he looked at attitude diffusion in social networks. He is currently working on repurposing administrative data to inform policy decision-making.