This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"Because of the nice global presentation, I recommend this book to students and young researchers who need the now classical properties of these second-order partial differential equations. Teachers will also find in this textbook the basis of an introductory course on second-order partial differential equations."
- Alain Brillard, Mathematical Reviews
"Beautifully written and superbly well-organised, I strongly recommend this book to anyone seeking a stylish, balanced, up-to-date survey of this central area of mathematics."
- Nick Lord, The Mathematical Gazette
"It is an expanded translation by the author of the German original. ... The range of methods is wide, covering integral kernels, maximum principles, variational principles, gradient descents, weak derivatives and Sobolev spaces. ... the proof are clear and pleasant, provided the reader has a good command in integration theory. ... This book is an interesting introduction to the multiple facets of partial differential equations -- especially to regularity theory -- for the reader who has already a good background in analysis." (Jean Van Schaftingen, Bulletin of the Belgian Mathematical Society, 2007)
"This graduate-level book is an introduction to the modern theory of partial differential equations (PDEs) with an emphasis on elliptic PDEs. ... The book is undoubtedly a success in the presentation of diverse methods in PDEs at such an introductory level. The reader has a great opportunity to learn basic techniques underlying current research in elliptic PDEs and be motivated for advanced theory of more general elliptic PDEs and nonlinear PDEs." (Dhruba Adhikari, MAA Reviews, December, 2014)
"This revised version gives an introduction to the theory of partial differential equations. ... Every chapter has at the end a very helpful summary and some exercises. This book is very useful for a PhD course." (Vincenzo Vespri, Zentralblatt MATH, Vol. 1259, 2013)
"Because of the nice global presentation, I recommend this book to students and young researchers who need the now classical properties of these second-order partial differential equations. Teachers will also find in this textbook the basis of an introductory course on second-order partial differential equations."
- Alain Brillard, Mathematical Reviews
"Beautifully written and superbly well-organised, I strongly recommend this book to anyone seeking a stylish, balanced, up-to-date survey of this central area of mathematics."
- Nick Lord, The Mathematical Gazette