Pattern Recognition and Computer Vision (eBook, PDF)
7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part III
Redaktion: Lin, Zhouchen; Liu, Cheng-Lin; Zhou, Jie; Zha, Hongbin; Silamu, Wushouer; Ubul, Kurban; He, Ran; Cheng, Ming-Ming
Pattern Recognition and Computer Vision (eBook, PDF)
7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part III
Redaktion: Lin, Zhouchen; Liu, Cheng-Lin; Zhou, Jie; Zha, Hongbin; Silamu, Wushouer; Ubul, Kurban; He, Ran; Cheng, Ming-Ming
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This 15-volume set LNCS 15031-15045 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2024, held in Urumqi, China, during October 18-20, 2024. The 579 full papers presented were carefully reviewed and selected from 1526 submissions. The papers cover various topics in the broad areas of pattern recognition and computer vision, including machine learning, pattern classification and cluster analysis, neural network and deep learning, low-level vision and image processing, object detection and recognition, 3D vision and…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 68.65MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 512
- Erscheinungstermin: 31. Oktober 2024
- Englisch
- ISBN-13: 9789819785025
- Artikelnr.: 72244096
- Verlag: Springer Nature Singapore
- Seitenzahl: 512
- Erscheinungstermin: 31. Oktober 2024
- Englisch
- ISBN-13: 9789819785025
- Artikelnr.: 72244096
Focusing on Significant Guidance: Preliminary Knowledge Guided Distillation.- ESTOR:Enumerate-Specify-Tutor Mechanism Used of Lexicon in Chinese NER.- EBSD: Short Text Sentiment Classification Using Sentence Vector Enhancement Mechanism.- CEDP-YOLO: UAV Object Detection Based on Context Enhancement and Dynamic Perception.- TLLFusion: An End-to-End Transformer-Based Method for Low-Light Infrared and Visible Image Fusion.- BD-YOLO : High-precision lightweight concrete bubble detector based on YOLOv7.- Semantic Consistency-Enhanced Refined Hashing for Fine-Grained Image Retrieval.- Frequency Feature Enhanced Mix Calibration Attention Network for Sequential Recommendation.- CFMISA: Cross-modal Fusion of Modal Invariant and Specific Representations for Multimodal Sentiment Analysis.- A Privacy-Preserving Source Code Vulnerability Detection Method.- Physically Informed Prior and Cross-Correlation Constraint for Fine-grained Road Crack Segmentation.- AFSNet: Adaptive Feature Suppression Network for Remote Sensing Image Change Detection.- BIVL-Net: Bidirectional Vision-Language Guidance for Visual Question Answering.- Enhancing Task Identification through Pseudo-OOD Features for Class-Incremental Learning.
Focusing on Significant Guidance: Preliminary Knowledge Guided Distillation.- ESTOR:Enumerate-Specify-Tutor Mechanism Used of Lexicon in Chinese NER.- EBSD: Short Text Sentiment Classification Using Sentence Vector Enhancement Mechanism.- CEDP-YOLO: UAV Object Detection Based on Context Enhancement and Dynamic Perception.- TLLFusion: An End-to-End Transformer-Based Method for Low-Light Infrared and Visible Image Fusion.- BD-YOLO : High-precision lightweight concrete bubble detector based on YOLOv7.- Semantic Consistency-Enhanced Refined Hashing for Fine-Grained Image Retrieval.- Frequency Feature Enhanced Mix Calibration Attention Network for Sequential Recommendation.- CFMISA: Cross-modal Fusion of Modal Invariant and Specific Representations for Multimodal Sentiment Analysis.- A Privacy-Preserving Source Code Vulnerability Detection Method.- Physically Informed Prior and Cross-Correlation Constraint for Fine-grained Road Crack Segmentation.- AFSNet: Adaptive Feature Suppression Network for Remote Sensing Image Change Detection.- BIVL-Net: Bidirectional Vision-Language Guidance for Visual Question Answering.- Enhancing Task Identification through Pseudo-OOD Features for Class-Incremental Learning.