65,95 €
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
33 °P sammeln
65,95 €
65,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
33 °P sammeln
Als Download kaufen
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
33 °P sammeln
Jetzt verschenken
65,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
33 °P sammeln
  • Format: ePub

This book illustrates the application of perfect simulation ideas and algorithms to a wide range of problems. The author describes numerous protocol methodologies for designing algorithms for specific problems. He first examines the commonly used acceptance/rejection (AR) protocol for creating perfect simulation algorithms. He then covers other major protocols, including coupling from the past (CFTP); the Fill, Machida, Murdoch, and Rosenthal (FMMR) method; the randomness recycler; retrospective sampling; and partially recursive AR, along with multiple variants of these protocols.

Produktbeschreibung
This book illustrates the application of perfect simulation ideas and algorithms to a wide range of problems. The author describes numerous protocol methodologies for designing algorithms for specific problems. He first examines the commonly used acceptance/rejection (AR) protocol for creating perfect simulation algorithms. He then covers other major protocols, including coupling from the past (CFTP); the Fill, Machida, Murdoch, and Rosenthal (FMMR) method; the randomness recycler; retrospective sampling; and partially recursive AR, along with multiple variants of these protocols.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Mark L. Huber is the Fletcher Jones Associate Professor of Mathematics and Statistics and George R. Roberts Fellow at Claremont McKenna College. Dr. Huber works in the area of computational probability, designing Monte Carlo methods for applications in statistics and computer science. His research interests include applied mathematics, calculus, computers, probability, and statistics. He earned a PhD from Cornell University.