Performance Evaluation by Simulation and Analysis with Applications to Computer Networks (eBook, ePUB)
Alle Infos zum eBook verschenken
Performance Evaluation by Simulation and Analysis with Applications to Computer Networks (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is devoted to the most used methodologies for performance evaluation: simulation using specialized software and mathematical modeling. An important part is dedicated to the simulation, particularly in its theoretical framework and the precautions to be taken in the implementation of the experimental procedure. These principles are illustrated by concrete examples achieved through operational simulation languages (OMNeT ++, OPNET). Presented under the complementary approach, the mathematical method is essential for the simulation. Both methodologies based largely on the theory of…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 6.71MB
- Ken ChenPerformance Evaluation by Simulation and Analysis with Applications to Computer Networks (eBook, PDF)139,99 €
- Todd K. MoonError Correction Coding (eBook, ePUB)129,99 €
- Philippe CapetInformation Evaluation (eBook, ePUB)139,99 €
- Paulo Romero Martins MacielPerformance, Reliability, and Availability Evaluation of Computational Systems, Volume I (eBook, ePUB)52,95 €
- Gerard-Michel CochardIntroduction to Stochastic Processes and Simulation (eBook, ePUB)139,99 €
- Saoussen KrichenSupply Chain Management and its Applications in Computer Science (eBook, ePUB)139,99 €
- Paulo Romero Martins MacielPerformance, Reliability, and Availability Evaluation of Computational Systems, Volume 2 (eBook, ePUB)52,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 316
- Erscheinungstermin: 2. Februar 2015
- Englisch
- ISBN-13: 9781119006206
- Artikelnr.: 42292464
- Verlag: John Wiley & Sons
- Seitenzahl: 316
- Erscheinungstermin: 2. Februar 2015
- Englisch
- ISBN-13: 9781119006206
- Artikelnr.: 42292464
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
144 8.2.3. Relation between N(t) and
145 8.3. Erlang distribution 145 8.4. Superposition of independent Poisson processes 146 8.5. Decomposition of a Poisson process 147 8.6. Distribution of arrival instants over a given interval 150 8.7. The PASTA property 151 CHAPTER 9. MARKOV QUEUEING SYSTEMS 153 9.1. Birth-and-death process 153 9.1.1. Definition 153 9.1.2. Differential equations 154 9.1.3. Steady-state solution 156 9.2. The M/M/1 queues 158 9.3. The M/M/
queues 160 9.4. The M/M/m queues 161 9.5. The M/M/1/K queues 163 9.6. The M/M/m/m queues 164 9.7. Examples 165 9.7.1. Two identical servers with different activation thresholds 165 9.7.2. A cybercafe 167 CHAPTER 10. THE M/G/1 QUEUES 169 10.1. Introduction 169 10.2. Embedded Markov chain 170 10.3. Length of the queue 171 10.3.1. Number of arrivals during a service period 172 10.3.2. Pollaczek-Khinchin formula 173 10.3.3. Examples 175 10.4. Sojourn time 178 10.5. Busy period 179 10.6. Pollaczek-Khinchin mean value formula 181 10.7. M/G/1 queue with server vacation 183 10.8. Priority queueing systems 185 CHAPTER 11. QUEUEING NETWORKS 189 11.1. Generality 189 11.2. Jackson network 192 11.3. Closed network 197 PART 3. PROBABILITY AND STATISTICS 201 CHAPTER 12. AN INTRODUCTION TO THE THEORY OF PROBABILITY 203 12.1. Axiomatic base 203 12.1.1. Introduction 203 12.1.2. Probability space 204 12.1.3. Set language versus probability language 206 12.2. Conditional probability 206 12.2.1. Definition 206 12.2.2. Law of total probability 207 12.3. Independence 207 12.4. Random variables 208 12.4.1. Definition 208 12.4.2. Cumulative distribution function 208 12.4.3. Discrete random variables 209 12.4.4. Continuous random variables 210 12.4.5. Characteristic function 212 12.5. Some common distributions 212 12.5.1. Bernoulli distribution 212 12.5.2. Binomial distribution 213 12.5.3. Poisson distribution 213 12.5.4. Geometric distribution 214 12.5.5. Uniform distribution 215 12.5.6. Triangular distribution 215 12.5.7. Exponential distribution 216 12.5.8. Normal distribution 217 12.5.9. Log-normal distribution 219 12.5.10. Pareto distribution 219 12.6. Joint probability distribution of multiple random variables 220 12.6.1. Definition 220 12.6.2. Independence and covariance 221 12.6.3. Mathematical expectation 221 12.7. Some interesting inequalities 222 12.7.1. Markov's inequality 222 12.7.2. Chebyshev's inequality 222 12.7.3. Cantelli's inequality 223 12.8. Convergences 223 12.8.1. Types of convergence 224 12.8.2. Law of large numbers 226 12.8.3. Central limit theorem 227 CHAPTER 13. AN INTRODUCTION TO STATISTICS 229 13.1. Introduction 229 13.2. Description of a sample 230 13.2.1. Graphic representation 230 13.2.2. Mean and variance of a given sample 231 13.2.3. Median 231 13.2.4. Extremities and quartiles 232 13.2.5. Mode and symmetry 232 13.2.6. Empirical cumulative distribution function and histogram 233 13.3. Parameters estimation 236 13.3.1. Position of the problem 236 13.3.2. Estimators 236 13.3.3. Sample mean and sample variance 237 13.3.4. Maximum-likelihood estimation 237 13.3.5. Method of moments 239 13.3.6. Confidence interval 240 13.4. Hypothesis testing 241 13.4.1. Introduction 241 13.4.2. Chi-square (
2) test 241 13.4.3. Kolmogorov-Smirnov test 244 13.4.4. Comparison between the
2 test and the K-S test 246 CHAPTER 14. MARKOV PROCESS 247 14.1. Stochastic process 247 14.2. Discrete-time Markov chains 248 14.2.1. Definitions 248 14.2.2. Properties 251 14.2.3. Transition diagram 253 14.2.4. Classification of states 254 14.2.5. Stationarity 255 14.2.6. Applications 257 14.3. Continuous-time Markov chain 260 14.3.1. Definitions 260 14.3.2. Properties 262 14.3.3. Structure of a Markov process 263 14.3.4. Generators 266 14.3.5. Stationarity 267 14.3.6. Transition diagram 270 14.3.7. Applications 272 BIBLIOGRAPHY 273 INDEX 277
144 8.2.3. Relation between N(t) and
145 8.3. Erlang distribution 145 8.4. Superposition of independent Poisson processes 146 8.5. Decomposition of a Poisson process 147 8.6. Distribution of arrival instants over a given interval 150 8.7. The PASTA property 151 CHAPTER 9. MARKOV QUEUEING SYSTEMS 153 9.1. Birth-and-death process 153 9.1.1. Definition 153 9.1.2. Differential equations 154 9.1.3. Steady-state solution 156 9.2. The M/M/1 queues 158 9.3. The M/M/
queues 160 9.4. The M/M/m queues 161 9.5. The M/M/1/K queues 163 9.6. The M/M/m/m queues 164 9.7. Examples 165 9.7.1. Two identical servers with different activation thresholds 165 9.7.2. A cybercafe 167 CHAPTER 10. THE M/G/1 QUEUES 169 10.1. Introduction 169 10.2. Embedded Markov chain 170 10.3. Length of the queue 171 10.3.1. Number of arrivals during a service period 172 10.3.2. Pollaczek-Khinchin formula 173 10.3.3. Examples 175 10.4. Sojourn time 178 10.5. Busy period 179 10.6. Pollaczek-Khinchin mean value formula 181 10.7. M/G/1 queue with server vacation 183 10.8. Priority queueing systems 185 CHAPTER 11. QUEUEING NETWORKS 189 11.1. Generality 189 11.2. Jackson network 192 11.3. Closed network 197 PART 3. PROBABILITY AND STATISTICS 201 CHAPTER 12. AN INTRODUCTION TO THE THEORY OF PROBABILITY 203 12.1. Axiomatic base 203 12.1.1. Introduction 203 12.1.2. Probability space 204 12.1.3. Set language versus probability language 206 12.2. Conditional probability 206 12.2.1. Definition 206 12.2.2. Law of total probability 207 12.3. Independence 207 12.4. Random variables 208 12.4.1. Definition 208 12.4.2. Cumulative distribution function 208 12.4.3. Discrete random variables 209 12.4.4. Continuous random variables 210 12.4.5. Characteristic function 212 12.5. Some common distributions 212 12.5.1. Bernoulli distribution 212 12.5.2. Binomial distribution 213 12.5.3. Poisson distribution 213 12.5.4. Geometric distribution 214 12.5.5. Uniform distribution 215 12.5.6. Triangular distribution 215 12.5.7. Exponential distribution 216 12.5.8. Normal distribution 217 12.5.9. Log-normal distribution 219 12.5.10. Pareto distribution 219 12.6. Joint probability distribution of multiple random variables 220 12.6.1. Definition 220 12.6.2. Independence and covariance 221 12.6.3. Mathematical expectation 221 12.7. Some interesting inequalities 222 12.7.1. Markov's inequality 222 12.7.2. Chebyshev's inequality 222 12.7.3. Cantelli's inequality 223 12.8. Convergences 223 12.8.1. Types of convergence 224 12.8.2. Law of large numbers 226 12.8.3. Central limit theorem 227 CHAPTER 13. AN INTRODUCTION TO STATISTICS 229 13.1. Introduction 229 13.2. Description of a sample 230 13.2.1. Graphic representation 230 13.2.2. Mean and variance of a given sample 231 13.2.3. Median 231 13.2.4. Extremities and quartiles 232 13.2.5. Mode and symmetry 232 13.2.6. Empirical cumulative distribution function and histogram 233 13.3. Parameters estimation 236 13.3.1. Position of the problem 236 13.3.2. Estimators 236 13.3.3. Sample mean and sample variance 237 13.3.4. Maximum-likelihood estimation 237 13.3.5. Method of moments 239 13.3.6. Confidence interval 240 13.4. Hypothesis testing 241 13.4.1. Introduction 241 13.4.2. Chi-square (
2) test 241 13.4.3. Kolmogorov-Smirnov test 244 13.4.4. Comparison between the
2 test and the K-S test 246 CHAPTER 14. MARKOV PROCESS 247 14.1. Stochastic process 247 14.2. Discrete-time Markov chains 248 14.2.1. Definitions 248 14.2.2. Properties 251 14.2.3. Transition diagram 253 14.2.4. Classification of states 254 14.2.5. Stationarity 255 14.2.6. Applications 257 14.3. Continuous-time Markov chain 260 14.3.1. Definitions 260 14.3.2. Properties 262 14.3.3. Structure of a Markov process 263 14.3.4. Generators 266 14.3.5. Stationarity 267 14.3.6. Transition diagram 270 14.3.7. Applications 272 BIBLIOGRAPHY 273 INDEX 277