Periodic Structures (eBook, PDF)
Mode-Matching Approach and Applications in Electromagnetic Engineering
Alle Infos zum eBook verschenken
Periodic Structures (eBook, PDF)
Mode-Matching Approach and Applications in Electromagnetic Engineering
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
PERIODIC STRUCTURES Mode-Matching Approach and Applications in Electromagnetic Engineering In Periodic Structures, Hwang gives readers a comprehensive understanding of the underlying physics in meta-materials made of periodic structures, providing a rigorous and firm mathematical framework for analyzing their electromagnetic properties. The book presents scattering and guiding characteristics of periodic structures using the mode-matching approach and their applications in electromagnetic engineering. * Provides an analytic approach to describing the wave propagation phenomena in photonic…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 17.61MB
- Modern Ferrites, Volume 2 (eBook, PDF)117,99 €
- Metamaterials (eBook, PDF)170,99 €
- Shahid AhmedElectromagnetic Pulse Simulations Using Finite-Difference Time-Domain Method (eBook, PDF)130,99 €
- Ismo V. LindellBoundary Conditions in Electromagnetics (eBook, PDF)122,99 €
- M. Mithat IdemenDiscontinuities in the Electromagnetic Field (eBook, PDF)111,99 €
- Levent SevgiElectromagnetic Modeling and Simulation (eBook, PDF)126,99 €
- David A. HillElectromagnetic Fields in Cavities (eBook, PDF)141,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 312
- Erscheinungstermin: 28. September 2012
- Englisch
- ISBN-13: 9781118188057
- Artikelnr.: 37343475
- Verlag: John Wiley & Sons
- Seitenzahl: 312
- Erscheinungstermin: 28. September 2012
- Englisch
- ISBN-13: 9781118188057
- Artikelnr.: 37343475
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
0 89 3.3.3 Eigenwave in a Two-Tone Periodic Medium 94 3.3.4 Sturm-Liouville Differential Equation with Periodic Boundary Condition 96 3.4 Eigenwave in a 1D Metallic Periodic Medium 98 3.4.1 Generalized Scattering Matrix at the Interface between a 1D Metallic Periodic Medium and Uniform Medium 99 3.5 Hybrid-Mode Analysis of a 1D Dielectric Grating: Fourier-Modal Approach 102 3.6 Input-Output Relation of a 1D Periodic Medium of Finite Thickness 108 3.7 Scattering Characteristics of a Grating Consisting of Multiple 1D Periodic Layers 111 3.7.1 Building-Block Approach 111 3.7.2 Scattering Analysis of 1D Diffraction Gratings 112 3.8 Guiding Characteristics of Waveguides Consisting of Multiple 1D Periodic Layers 119 3.8.1 Transverse Resonance Technique 119 3.8.2 Dispersion Relation of a 1D Grating Waveguide 119 References 129 Further Readings 130 4 Two- and Three-Dimensional Periodic Structures 131 4.1 Modal Transmission-Line Approach for a 2D Periodic Metallic Medium: In-Plane Propagation 131 4.1.1 Generalized Scattering Matrix at the Interface between a 1D Periodic Metallic Medium and Uniform Medium 133 4.1.2 Periodic Boundary Condition on the Unit Cell along the y-axis 137 4.1.3 A Simple Graphical Method 138 4.1.4 Phase Relation: the Relationship Among KX, KY, and KO 138 4.1.5 Dispersion Relation: the Relationship Between KO and Kx (or ky) 143 4.1.6 Brillouin Zone and Band Structure 146 4.2 Modal Transmission Line Approach for a 2D Periodic Dielectric Medium: In-Plane Propagation 152 4.2.1 Input-Output Relation at the Interface: Generalized Scattering Matrix Representation 156 4.2.2 Brillouin Diagram and Phase Relation 158 4.3 Double Fourier-Modal Approach for a 2D Dielectric Periodic Structure: Out-of-Plane Propagation 166 4.3.1 Scattering Analysis of a 2D Grating: Out-of-Plane Propagation 171 4.4 Three-Dimensional Periodic Structures 172 4.4.1 Scattering Analysis of a 3D Periodic Structure 174 4.4.2 Eigenwave Analysis of a 3D Periodic Medium 180 Appendix: Closed-Form Solution of
pq,mn and
pq,mn 189 References 190 5 Introducing Defects into Periodic Structures 191 5.1 A Parallel-Plane Waveguide having a Pair of 1D Semi-Infinite Periodic Structures as its Side Walls 191 5.1.1 Bloch Impedance 192 5.1.2 Surface States Supported at the Interface of a Semi-Infinite 1D Periodic Structure 193 5.1.3 A Semi-Infinite 1D Periodic Structure Consisting of Symmetric Dielectric Waveguides 200 5.2 Dispersion Relation of a Parallel-Plane Waveguide with Semi-Infinite 1D Periodic Structures as Waveguide Side Walls 203 5.2.1 Numerical Example 204 5.3 A Parallel-Plane Waveguide with 2D Dielectric Periodic Structures as its Side Walls 208 5.3.1 Method of Mathematical Analysis 211 5.3.2 Dispersion Relation of a Channel with a Pair of 2D Periodic Structures as its Waveguide Side Walls 214 5.4 Scattering Characteristics of a Periodic Structure with Defects 223 5.4.1 Fabry-Perot Etalon 229 5.4.2 The Correlation between the Scattering and Guiding Characteristics 231 5.5 A Parallel-Plane Waveguide with 2D Metallic Periodic Structures as its Side Walls 236 5.6 Other Applications in Microwave Engineering 240 References 243 6 Periodic Impedance Surface 245 6.1 Scattering Characteristics of Plane Wave by a 1D Periodic Structure Consisting of a Cavities Array 246 6.1.1 An AMC Surface Made of Corrugated Metal Surface with Quarter-Wavelength Depth 256 6.2 Periodic Impedance Surface Approach (PISA) 264 6.3 Scattering of Plane Wave by 1D Periodic Impedance Surface: Non-Principal Plane Propagation 268 6.3.1 Guiding Characteristics of Waves Supported by a 1D Periodic Impedance Surface 277 6.4 Scattering of Plane Wave by a Dyadic 2D Periodic Impedance Surface 277 References 280 7 Exotic Dielectrics Made of Periodic Structures 283 7.1 Synthetic Dielectrics Using a 2D Dielectric Columns Array 283 7.1.1 Description of the Example 284 7.1.2 Phase-Relation Diagram of a Uniform Dielectric Medium 285 7.2 Refractive Index of a 2D Periodic Medium 287 7.2.1 Conclusion 291 7.3 An Artificial Dielectric Made of 1D Periodic Dielectric Layers 292 7.3.1 Effective Refractive Index of the 1D Dielectric Periodic Medium 293 7.3.2 Effective Wave-Impedance of the 1D Dielectric Periodic Medium 293 7.4 Conclusion 295 References 295 Index 297
0 89 3.3.3 Eigenwave in a Two-Tone Periodic Medium 94 3.3.4 Sturm-Liouville Differential Equation with Periodic Boundary Condition 96 3.4 Eigenwave in a 1D Metallic Periodic Medium 98 3.4.1 Generalized Scattering Matrix at the Interface between a 1D Metallic Periodic Medium and Uniform Medium 99 3.5 Hybrid-Mode Analysis of a 1D Dielectric Grating: Fourier-Modal Approach 102 3.6 Input-Output Relation of a 1D Periodic Medium of Finite Thickness 108 3.7 Scattering Characteristics of a Grating Consisting of Multiple 1D Periodic Layers 111 3.7.1 Building-Block Approach 111 3.7.2 Scattering Analysis of 1D Diffraction Gratings 112 3.8 Guiding Characteristics of Waveguides Consisting of Multiple 1D Periodic Layers 119 3.8.1 Transverse Resonance Technique 119 3.8.2 Dispersion Relation of a 1D Grating Waveguide 119 References 129 Further Readings 130 4 Two- and Three-Dimensional Periodic Structures 131 4.1 Modal Transmission-Line Approach for a 2D Periodic Metallic Medium: In-Plane Propagation 131 4.1.1 Generalized Scattering Matrix at the Interface between a 1D Periodic Metallic Medium and Uniform Medium 133 4.1.2 Periodic Boundary Condition on the Unit Cell along the y-axis 137 4.1.3 A Simple Graphical Method 138 4.1.4 Phase Relation: the Relationship Among KX, KY, and KO 138 4.1.5 Dispersion Relation: the Relationship Between KO and Kx (or ky) 143 4.1.6 Brillouin Zone and Band Structure 146 4.2 Modal Transmission Line Approach for a 2D Periodic Dielectric Medium: In-Plane Propagation 152 4.2.1 Input-Output Relation at the Interface: Generalized Scattering Matrix Representation 156 4.2.2 Brillouin Diagram and Phase Relation 158 4.3 Double Fourier-Modal Approach for a 2D Dielectric Periodic Structure: Out-of-Plane Propagation 166 4.3.1 Scattering Analysis of a 2D Grating: Out-of-Plane Propagation 171 4.4 Three-Dimensional Periodic Structures 172 4.4.1 Scattering Analysis of a 3D Periodic Structure 174 4.4.2 Eigenwave Analysis of a 3D Periodic Medium 180 Appendix: Closed-Form Solution of
pq,mn and
pq,mn 189 References 190 5 Introducing Defects into Periodic Structures 191 5.1 A Parallel-Plane Waveguide having a Pair of 1D Semi-Infinite Periodic Structures as its Side Walls 191 5.1.1 Bloch Impedance 192 5.1.2 Surface States Supported at the Interface of a Semi-Infinite 1D Periodic Structure 193 5.1.3 A Semi-Infinite 1D Periodic Structure Consisting of Symmetric Dielectric Waveguides 200 5.2 Dispersion Relation of a Parallel-Plane Waveguide with Semi-Infinite 1D Periodic Structures as Waveguide Side Walls 203 5.2.1 Numerical Example 204 5.3 A Parallel-Plane Waveguide with 2D Dielectric Periodic Structures as its Side Walls 208 5.3.1 Method of Mathematical Analysis 211 5.3.2 Dispersion Relation of a Channel with a Pair of 2D Periodic Structures as its Waveguide Side Walls 214 5.4 Scattering Characteristics of a Periodic Structure with Defects 223 5.4.1 Fabry-Perot Etalon 229 5.4.2 The Correlation between the Scattering and Guiding Characteristics 231 5.5 A Parallel-Plane Waveguide with 2D Metallic Periodic Structures as its Side Walls 236 5.6 Other Applications in Microwave Engineering 240 References 243 6 Periodic Impedance Surface 245 6.1 Scattering Characteristics of Plane Wave by a 1D Periodic Structure Consisting of a Cavities Array 246 6.1.1 An AMC Surface Made of Corrugated Metal Surface with Quarter-Wavelength Depth 256 6.2 Periodic Impedance Surface Approach (PISA) 264 6.3 Scattering of Plane Wave by 1D Periodic Impedance Surface: Non-Principal Plane Propagation 268 6.3.1 Guiding Characteristics of Waves Supported by a 1D Periodic Impedance Surface 277 6.4 Scattering of Plane Wave by a Dyadic 2D Periodic Impedance Surface 277 References 280 7 Exotic Dielectrics Made of Periodic Structures 283 7.1 Synthetic Dielectrics Using a 2D Dielectric Columns Array 283 7.1.1 Description of the Example 284 7.1.2 Phase-Relation Diagram of a Uniform Dielectric Medium 285 7.2 Refractive Index of a 2D Periodic Medium 287 7.2.1 Conclusion 291 7.3 An Artificial Dielectric Made of 1D Periodic Dielectric Layers 292 7.3.1 Effective Refractive Index of the 1D Dielectric Periodic Medium 293 7.3.2 Effective Wave-Impedance of the 1D Dielectric Periodic Medium 293 7.4 Conclusion 295 References 295 Index 297