53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
27 °P sammeln
53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
27 °P sammeln
Als Download kaufen
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
27 °P sammeln
Jetzt verschenken
53,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
27 °P sammeln
  • Format: PDF

This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A8-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition of Morse-A8-categories for closed oriented manifolds involving families of Morse functions. To make A8-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid's approach, including a discussion of all relevant analytic notions and…mehr

Produktbeschreibung
This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A8-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition of Morse-A8-categories for closed oriented manifolds involving families of Morse functions. To make A8-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid's approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained.
In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Stephan Mescher is a Research Fellow at the University of Leipzig. He graduated with a degree in Mathematics from Bielefeld University in 2008 and obtained his Ph.D. at the University of Leipzig in 2017, supervised by Prof. Matthias Schwarz.