With the second edition, new chapters on generalized nonlinear mixed effects models and Bayesian models are presented, along with an extensive chapter on simulation. In addition, many chapters have been updated to reflect recent developments. The theory behind the methods is illustrated using real data from the literature and from the author's experiences in drug development. Data are analyzed using a variety of software, including NONMEM, SAS, SAAM II, and WinBUGS. A key component of the book is to show how models are developed using an acceptance-rejection paradigm with the ultimate goal of using models to explain data, summarize complex experiments, and use simulation to answer "what-if" questions. Scientists and statisticians outside the pharmaceutical sciences will find the book invaluable as a reference for applied modeling and simulation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.