Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The aim of the work is give an overview of the activity in the field of Photonic Crystal developed in the frame of COST P11 action . The main objective of the COST P11 action was to unify and coordinate national efforts aimed at studying linear and nonlinear optical interactions with Photonic Crystals (PCs), without neglecting an important aspect related to the material research as idea and methods of realizations of 3D PC, together with the development and implementation of measurement techniques for the experimental evaluation of their potential applications in different area, as for example…mehr
The aim of the work is give an overview of the activity in the field of Photonic Crystal developed in the frame of COST P11 action . The main objective of the COST P11 action was to unify and coordinate national efforts aimed at studying linear and nonlinear optical interactions with Photonic Crystals (PCs), without neglecting an important aspect related to the material research as idea and methods of realizations of 3D PC, together with the development and implementation of measurement techniques for the experimental evaluation of their potential applications in different area, as for example telecommunication with novel optical fibers, lasers, nonlinear multi-functionality, display devices, opto-electronics, sensors.
The book contains contributions from authors who gave their lecture at the Cost P11 Training School.
Basics.- to Photonic Crystals and Photonic Band-Gaps.- Physics of Slow Bloch Modes and Their Applications.- Nonlinear Optics in Photonic Crystals.- Quasi Phase Matching in Two-Dimensional Quadratic Nonlinear Photonic Crystals.- Harmonic Generation in Nanostructures: Metal Nanoparticles and Photonic Crystals.- Ultra-fast Optical Reconfiguration via Nonlinear Effects in Semiconductor Photonic Crystals.- Nonlinear Optics with Photonic-Crystal Fibres.- Technology, Integration an Active Photonic Crystals.- Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control.- Silicon-Based Photonic Crystals and Nanowires.- Characterisation and Measurements of Nanostructures.- Near Infrared Optical Characterization Techniques for Photonic Crystals.- Characterization Techniques for Planar Optical Microresonators.- On SNOM Resolution Improvement.- Simulation Techniques.- Photonic Crystals: Simulation Successes and some Remaining Challenges.- Plane-Wave Admittance Methodand its Applications to Modelling Photonic Crystal Structures.
Basics.- to Photonic Crystals and Photonic Band-Gaps.- Physics of Slow Bloch Modes and Their Applications.- Nonlinear Optics in Photonic Crystals.- Quasi Phase Matching in Two-Dimensional Quadratic Nonlinear Photonic Crystals.- Harmonic Generation in Nanostructures: Metal Nanoparticles and Photonic Crystals.- Ultra-fast Optical Reconfiguration via Nonlinear Effects in Semiconductor Photonic Crystals.- Nonlinear Optics with Photonic-Crystal Fibres.- Technology, Integration an Active Photonic Crystals.- Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control.- Silicon-Based Photonic Crystals and Nanowires.- Characterisation and Measurements of Nanostructures.- Near Infrared Optical Characterization Techniques for Photonic Crystals.- Characterization Techniques for Planar Optical Microresonators.- On SNOM Resolution Improvement.- Simulation Techniques.- Photonic Crystals: Simulation Successes and some Remaining Challenges.- Plane-Wave Admittance Methodand its Applications to Modelling Photonic Crystal Structures.
Basics.- to Photonic Crystals and Photonic Band-Gaps.- Physics of Slow Bloch Modes and Their Applications.- Nonlinear Optics in Photonic Crystals.- Quasi Phase Matching in Two-Dimensional Quadratic Nonlinear Photonic Crystals.- Harmonic Generation in Nanostructures: Metal Nanoparticles and Photonic Crystals.- Ultra-fast Optical Reconfiguration via Nonlinear Effects in Semiconductor Photonic Crystals.- Nonlinear Optics with Photonic-Crystal Fibres.- Technology, Integration an Active Photonic Crystals.- Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control.- Silicon-Based Photonic Crystals and Nanowires.- Characterisation and Measurements of Nanostructures.- Near Infrared Optical Characterization Techniques for Photonic Crystals.- Characterization Techniques for Planar Optical Microresonators.- On SNOM Resolution Improvement.- Simulation Techniques.- Photonic Crystals: Simulation Successes and some Remaining Challenges.- Plane-Wave Admittance Methodand its Applications to Modelling Photonic Crystal Structures.
Basics.- to Photonic Crystals and Photonic Band-Gaps.- Physics of Slow Bloch Modes and Their Applications.- Nonlinear Optics in Photonic Crystals.- Quasi Phase Matching in Two-Dimensional Quadratic Nonlinear Photonic Crystals.- Harmonic Generation in Nanostructures: Metal Nanoparticles and Photonic Crystals.- Ultra-fast Optical Reconfiguration via Nonlinear Effects in Semiconductor Photonic Crystals.- Nonlinear Optics with Photonic-Crystal Fibres.- Technology, Integration an Active Photonic Crystals.- Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control.- Silicon-Based Photonic Crystals and Nanowires.- Characterisation and Measurements of Nanostructures.- Near Infrared Optical Characterization Techniques for Photonic Crystals.- Characterization Techniques for Planar Optical Microresonators.- On SNOM Resolution Improvement.- Simulation Techniques.- Photonic Crystals: Simulation Successes and some Remaining Challenges.- Plane-Wave Admittance Methodand its Applications to Modelling Photonic Crystal Structures.
Rezensionen
From the reviews: "The book begins by explaining the basics of photonic crystals using the framework of quantum mechanics on periodic structures, well known as Bloch modes, in all dimensions of the actual crystals. ... This work also provides a useful update for photonics and laser professionals/researchers on photonic band-gap devices as fundamental devices for future laser nanotechnology applications. Summing Up: Recommended. Upper-division undergraduate through professional collections." (G. J. Fochesatto, Choice, Vol. 47 (4), December, 2009)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497