Jaime Frejlich
Photorefractive Materials (eBook, PDF)
Fundamental Concepts, Holographic Recording and Materials Characterization
152,99 €
152,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
152,99 €
Als Download kaufen
152,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
152,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Jaime Frejlich
Photorefractive Materials (eBook, PDF)
Fundamental Concepts, Holographic Recording and Materials Characterization
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Photorefractive Materials presents an overview of the basic features and properties of photorefractive materials, covering a wide array of related topics. It provides a coherent approach suitable for introductory and advanced students seeking to learn or review the fundamentals, as well as senior researchers who need a reference while investigating more specialized areas.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 3.88MB
Andere Kunden interessierten sich auch für
- Jaime FrejlichPhotorefractive Materials for Dynamic Optical Recording (eBook, PDF)152,99 €
- Smart Light-Responsive Materials (eBook, PDF)162,99 €
- Advances in Computed Tomography for Geomaterials (eBook, PDF)220,99 €
- Kyunghwan OhSilica Optical Fiber Technology for Devices and Components (eBook, PDF)104,99 €
- Maksim SkorobogatiyNanostructured and Subwavelength Waveguides (eBook, PDF)117,99 €
- Advances in Bioceramics and Biocomposites II, Volume 27, Issue 6 (eBook, PDF)112,99 €
- Photochemistry and Photophysics of Polymeric Materials (eBook, PDF)154,99 €
-
-
-
Photorefractive Materials presents an overview of the basic features and properties of photorefractive materials, covering a wide array of related topics. It provides a coherent approach suitable for introductory and advanced students seeking to learn or review the fundamentals, as well as senior researchers who need a reference while investigating more specialized areas.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 336
- Erscheinungstermin: 3. Januar 2007
- Englisch
- ISBN-13: 9780470089057
- Artikelnr.: 37290445
- Verlag: John Wiley & Sons
- Seitenzahl: 336
- Erscheinungstermin: 3. Januar 2007
- Englisch
- ISBN-13: 9780470089057
- Artikelnr.: 37290445
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Jaime Frejlich graduated as a chemical engineer at the Universidad de la República, Uruguay (1973) and earned his PhD in physics/optics at Université Pierre et Marie Curie in Paris, France, in 1977. He has been a professor at Universidade Estadual de Campinas, Instituto de Física do Laboratório de Óptica in Brazil since 1978. Professor Frejlich has published more than eighty scientific papers in specialized journals. His present research interests are in photorefractive materials, effects, processes, and applications.
LIST OF FIGURES.
LIST OF TABLES.
PREFACE.
ACKNOWLEDGMENTS.
I FUNDAMENTALS.
1. ELECTRO-OPTIC EFFECT.
1.1 Light propagation in crystals.
1.2 Tensorial Analysis.
1.3 Electro-optic effect.
1.4 Concluding Remarks.
2. PHOTOACTIVE CENTERS AND PHOTOCONDUCTIVITY.
2.1 Photoactive centers: Deep and shallow traps.
2.2 Photoconductivity.
2.3 Photochromic effect.
II HOLOGRAPHIC RECORDING.
3. RECORDING A SPACE-CHARGE ELECTRIC FIELD.
3.1 Index of refraction modulation.
3.2 General formulation.
3.3 First spatial harmonic approximation.
3.4 Steady-state nonstationary process.
3.5 Photovoltaic Materials.
4. VOLUME HOLOGRAM WITH WAVE MIXING.
4.1 Coupled wave theory: Fixed grating.
4.2 Dynamic coupled wave theory.
4.3 Phase modulation.
4.4 Four-wave mixing.
4.5 Final remarks.
5. ANISOTROPIC DIFFRACTION.
5.1 Coupled wave with anisotropic diffraction.
5.2 Anisotropic diffraction and optical activity.
6. STABILIZED HOLOGRAPHIC RECORDING.
6.1 Introduction.
6.2 Mathematical formulation.
6.3 Self-stabilized recording in actual materials.
III MATERIALS CHARACTERIZATION.
7. NONHOLOGRAPHIC OPTICAL METHODS.
7.1 Light-induced absorption.
7.2 Photoconductivity.
7.3 Electro-optic coefficient.
8. HOLOGRAPHIC TECHNIQUES.
8.1 Direct holographic techniques.
8.2 Phase modulation techniques.
9. SELF-STABILIZED HOLOGRAPHIC TECHNIQUES.
9.1 Holographic phase shift.
9.2 Fringe-locked running holograms.
9.3 Characterization of LiNbO3:Fe.
IV APPLICATIONS.
10. VIBRATIONS AND DEFORMATIONS.
10.1 Measurement of Vibration and Deformation.
10.2 Experimental Setup.
11. FIXED HOLOGRAMS.
11.1 Introduction.
11.2 Fixed holograms in LiNbO3.
11.3 Theory.
11.4 Experiment.
V APPENDICES.
A DETECTING A REVERSIBLE REAL-TIME HOLOGRAM.
A.1 Naked-eye detection.
A.1.1 Diffraction.
A.1.2 Interference.
A.2 Instrumental detection.
B DIFFRACTION EFFICIENCY MEASUREMENT: REVERSIBLE VOLUME HOLOGRAMS.
B.1 Angular Bragg selectivity.
B.1.1 In-Bragg recording beams.
B.1.2 Probe beam.
B.2 Reversible holograms.
B.3 High index of refraction material.
C EFFECTIVELY APPLIED ELECTRIC FIELD.
D PHYSICAL MEANING OF SOME FUNDAMENTAL PARAMETERS.
D.1 Debye screening length.
D.1.1 Temperature.
D.1.2 Debye screening length.
D.2 Diffusion and mobility.
E PHOTODIODES.
E.1 Photovoltaic regime.
E.2 Photoconductive regime.
E.3 Operational amplifier operated.
BIBLIOGRAPHY.
INDEX.
LIST OF TABLES.
PREFACE.
ACKNOWLEDGMENTS.
I FUNDAMENTALS.
1. ELECTRO-OPTIC EFFECT.
1.1 Light propagation in crystals.
1.2 Tensorial Analysis.
1.3 Electro-optic effect.
1.4 Concluding Remarks.
2. PHOTOACTIVE CENTERS AND PHOTOCONDUCTIVITY.
2.1 Photoactive centers: Deep and shallow traps.
2.2 Photoconductivity.
2.3 Photochromic effect.
II HOLOGRAPHIC RECORDING.
3. RECORDING A SPACE-CHARGE ELECTRIC FIELD.
3.1 Index of refraction modulation.
3.2 General formulation.
3.3 First spatial harmonic approximation.
3.4 Steady-state nonstationary process.
3.5 Photovoltaic Materials.
4. VOLUME HOLOGRAM WITH WAVE MIXING.
4.1 Coupled wave theory: Fixed grating.
4.2 Dynamic coupled wave theory.
4.3 Phase modulation.
4.4 Four-wave mixing.
4.5 Final remarks.
5. ANISOTROPIC DIFFRACTION.
5.1 Coupled wave with anisotropic diffraction.
5.2 Anisotropic diffraction and optical activity.
6. STABILIZED HOLOGRAPHIC RECORDING.
6.1 Introduction.
6.2 Mathematical formulation.
6.3 Self-stabilized recording in actual materials.
III MATERIALS CHARACTERIZATION.
7. NONHOLOGRAPHIC OPTICAL METHODS.
7.1 Light-induced absorption.
7.2 Photoconductivity.
7.3 Electro-optic coefficient.
8. HOLOGRAPHIC TECHNIQUES.
8.1 Direct holographic techniques.
8.2 Phase modulation techniques.
9. SELF-STABILIZED HOLOGRAPHIC TECHNIQUES.
9.1 Holographic phase shift.
9.2 Fringe-locked running holograms.
9.3 Characterization of LiNbO3:Fe.
IV APPLICATIONS.
10. VIBRATIONS AND DEFORMATIONS.
10.1 Measurement of Vibration and Deformation.
10.2 Experimental Setup.
11. FIXED HOLOGRAMS.
11.1 Introduction.
11.2 Fixed holograms in LiNbO3.
11.3 Theory.
11.4 Experiment.
V APPENDICES.
A DETECTING A REVERSIBLE REAL-TIME HOLOGRAM.
A.1 Naked-eye detection.
A.1.1 Diffraction.
A.1.2 Interference.
A.2 Instrumental detection.
B DIFFRACTION EFFICIENCY MEASUREMENT: REVERSIBLE VOLUME HOLOGRAMS.
B.1 Angular Bragg selectivity.
B.1.1 In-Bragg recording beams.
B.1.2 Probe beam.
B.2 Reversible holograms.
B.3 High index of refraction material.
C EFFECTIVELY APPLIED ELECTRIC FIELD.
D PHYSICAL MEANING OF SOME FUNDAMENTAL PARAMETERS.
D.1 Debye screening length.
D.1.1 Temperature.
D.1.2 Debye screening length.
D.2 Diffusion and mobility.
E PHOTODIODES.
E.1 Photovoltaic regime.
E.2 Photoconductive regime.
E.3 Operational amplifier operated.
BIBLIOGRAPHY.
INDEX.
LIST OF FIGURES.
LIST OF TABLES.
PREFACE.
ACKNOWLEDGMENTS.
I FUNDAMENTALS.
1. ELECTRO-OPTIC EFFECT.
1.1 Light propagation in crystals.
1.2 Tensorial Analysis.
1.3 Electro-optic effect.
1.4 Concluding Remarks.
2. PHOTOACTIVE CENTERS AND PHOTOCONDUCTIVITY.
2.1 Photoactive centers: Deep and shallow traps.
2.2 Photoconductivity.
2.3 Photochromic effect.
II HOLOGRAPHIC RECORDING.
3. RECORDING A SPACE-CHARGE ELECTRIC FIELD.
3.1 Index of refraction modulation.
3.2 General formulation.
3.3 First spatial harmonic approximation.
3.4 Steady-state nonstationary process.
3.5 Photovoltaic Materials.
4. VOLUME HOLOGRAM WITH WAVE MIXING.
4.1 Coupled wave theory: Fixed grating.
4.2 Dynamic coupled wave theory.
4.3 Phase modulation.
4.4 Four-wave mixing.
4.5 Final remarks.
5. ANISOTROPIC DIFFRACTION.
5.1 Coupled wave with anisotropic diffraction.
5.2 Anisotropic diffraction and optical activity.
6. STABILIZED HOLOGRAPHIC RECORDING.
6.1 Introduction.
6.2 Mathematical formulation.
6.3 Self-stabilized recording in actual materials.
III MATERIALS CHARACTERIZATION.
7. NONHOLOGRAPHIC OPTICAL METHODS.
7.1 Light-induced absorption.
7.2 Photoconductivity.
7.3 Electro-optic coefficient.
8. HOLOGRAPHIC TECHNIQUES.
8.1 Direct holographic techniques.
8.2 Phase modulation techniques.
9. SELF-STABILIZED HOLOGRAPHIC TECHNIQUES.
9.1 Holographic phase shift.
9.2 Fringe-locked running holograms.
9.3 Characterization of LiNbO3:Fe.
IV APPLICATIONS.
10. VIBRATIONS AND DEFORMATIONS.
10.1 Measurement of Vibration and Deformation.
10.2 Experimental Setup.
11. FIXED HOLOGRAMS.
11.1 Introduction.
11.2 Fixed holograms in LiNbO3.
11.3 Theory.
11.4 Experiment.
V APPENDICES.
A DETECTING A REVERSIBLE REAL-TIME HOLOGRAM.
A.1 Naked-eye detection.
A.1.1 Diffraction.
A.1.2 Interference.
A.2 Instrumental detection.
B DIFFRACTION EFFICIENCY MEASUREMENT: REVERSIBLE VOLUME HOLOGRAMS.
B.1 Angular Bragg selectivity.
B.1.1 In-Bragg recording beams.
B.1.2 Probe beam.
B.2 Reversible holograms.
B.3 High index of refraction material.
C EFFECTIVELY APPLIED ELECTRIC FIELD.
D PHYSICAL MEANING OF SOME FUNDAMENTAL PARAMETERS.
D.1 Debye screening length.
D.1.1 Temperature.
D.1.2 Debye screening length.
D.2 Diffusion and mobility.
E PHOTODIODES.
E.1 Photovoltaic regime.
E.2 Photoconductive regime.
E.3 Operational amplifier operated.
BIBLIOGRAPHY.
INDEX.
LIST OF TABLES.
PREFACE.
ACKNOWLEDGMENTS.
I FUNDAMENTALS.
1. ELECTRO-OPTIC EFFECT.
1.1 Light propagation in crystals.
1.2 Tensorial Analysis.
1.3 Electro-optic effect.
1.4 Concluding Remarks.
2. PHOTOACTIVE CENTERS AND PHOTOCONDUCTIVITY.
2.1 Photoactive centers: Deep and shallow traps.
2.2 Photoconductivity.
2.3 Photochromic effect.
II HOLOGRAPHIC RECORDING.
3. RECORDING A SPACE-CHARGE ELECTRIC FIELD.
3.1 Index of refraction modulation.
3.2 General formulation.
3.3 First spatial harmonic approximation.
3.4 Steady-state nonstationary process.
3.5 Photovoltaic Materials.
4. VOLUME HOLOGRAM WITH WAVE MIXING.
4.1 Coupled wave theory: Fixed grating.
4.2 Dynamic coupled wave theory.
4.3 Phase modulation.
4.4 Four-wave mixing.
4.5 Final remarks.
5. ANISOTROPIC DIFFRACTION.
5.1 Coupled wave with anisotropic diffraction.
5.2 Anisotropic diffraction and optical activity.
6. STABILIZED HOLOGRAPHIC RECORDING.
6.1 Introduction.
6.2 Mathematical formulation.
6.3 Self-stabilized recording in actual materials.
III MATERIALS CHARACTERIZATION.
7. NONHOLOGRAPHIC OPTICAL METHODS.
7.1 Light-induced absorption.
7.2 Photoconductivity.
7.3 Electro-optic coefficient.
8. HOLOGRAPHIC TECHNIQUES.
8.1 Direct holographic techniques.
8.2 Phase modulation techniques.
9. SELF-STABILIZED HOLOGRAPHIC TECHNIQUES.
9.1 Holographic phase shift.
9.2 Fringe-locked running holograms.
9.3 Characterization of LiNbO3:Fe.
IV APPLICATIONS.
10. VIBRATIONS AND DEFORMATIONS.
10.1 Measurement of Vibration and Deformation.
10.2 Experimental Setup.
11. FIXED HOLOGRAMS.
11.1 Introduction.
11.2 Fixed holograms in LiNbO3.
11.3 Theory.
11.4 Experiment.
V APPENDICES.
A DETECTING A REVERSIBLE REAL-TIME HOLOGRAM.
A.1 Naked-eye detection.
A.1.1 Diffraction.
A.1.2 Interference.
A.2 Instrumental detection.
B DIFFRACTION EFFICIENCY MEASUREMENT: REVERSIBLE VOLUME HOLOGRAMS.
B.1 Angular Bragg selectivity.
B.1.1 In-Bragg recording beams.
B.1.2 Probe beam.
B.2 Reversible holograms.
B.3 High index of refraction material.
C EFFECTIVELY APPLIED ELECTRIC FIELD.
D PHYSICAL MEANING OF SOME FUNDAMENTAL PARAMETERS.
D.1 Debye screening length.
D.1.1 Temperature.
D.1.2 Debye screening length.
D.2 Diffusion and mobility.
E PHOTODIODES.
E.1 Photovoltaic regime.
E.2 Photoconductive regime.
E.3 Operational amplifier operated.
BIBLIOGRAPHY.
INDEX.