A. M. Fridman, V. L. Polyachenko
Physics of Gravitating Systems II (eBook, PDF)
Nonlinear Collective Processes: Nonlinear Waves, Solitons, Collisionless Shocks, Turbulence. Astrophysical Applications
Übersetzer: Aries, A. B.; Poliakoff, I. N.
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
A. M. Fridman, V. L. Polyachenko
Physics of Gravitating Systems II (eBook, PDF)
Nonlinear Collective Processes: Nonlinear Waves, Solitons, Collisionless Shocks, Turbulence. Astrophysical Applications
Übersetzer: Aries, A. B.; Poliakoff, I. N.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 28.46MB
Andere Kunden interessierten sich auch für
- A. M. FridmanPhysics of Gravitating Systems I (eBook, PDF)40,95 €
- Michael SoffelSpace-Time Reference Systems (eBook, PDF)40,95 €
- Mechanisms of Chromospheric and Coronal Heating (eBook, PDF)73,95 €
- Helmut SchefflerPhysics of the Galaxy and Interstellar Matter (eBook, PDF)40,95 €
- A Comparison of the Dynamical Evolution of Planetary Systems (eBook, PDF)113,95 €
- Rutger van HaasterenGravitational Wave Detection and Data Analysis for Pulsar Timing Arrays (eBook, PDF)40,95 €
- The 2007 ESO Instrument Calibration Workshop (eBook, PDF)40,95 €
-
-
-
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 358
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642878336
- Artikelnr.: 53204213
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
(Volume II).- Non-Jeans Instabilities of Gravitating Systems.- VI Non-Jeans Instabilities of Gravitating Systems.- VII Problems of Nonlinear Theory.- II Astrophysical Applications.- VIII General Remarks.- IX Spherical Systems.- X Ellipsoidal Systems.- XI Disk-like Systems. Spiral Structure.- XII Other Applications.- 1. Collisionless Kinetic Equation and Poisson Equation in Different Coordinate Systems.- 2. Separation of Angular Variables in the Problem of Small Perturbations of Spherically Symmetrical Collisionless Systems.- 3. Statistical Simulation of Stellar Systems.- 3.1. Simulation of Stellar Spheres of the First Camm Series.- 3.2. Simulation of Homogeneous Nonrotating Ellipsoids.- 4. The Matrix Formulation of the Problem of Eigenoscillations of a Spherically-Symmetrical Collisionless System.- 5. The Matrix Formulation of the Problem of Eigenoscillations of Collisionless Disk Systems.- 5.1. The Main Ideas of the Derivation of the Matrix Equation.- 5.2. "Lagrange" Derivation of the Matrix Equation.- 6. Derivation of the Dispersion Equation for Perturbations of the Three-Axial Freeman Ellipsoid.- 7. WKB Solutions of the Poisson Equation Taking into Account the Preexponential Terms and Solution of the Kinetic Equation in the Postepicyclic Approximation.- 7.1. The Relation Between the Potential and the Surface Density.- 7.2. Calculations of the Response of a Stellar Disk to an Imposed Perturbation of the Potential.- 8. On the Derivation of the Nonlinear Dispersion Equation for Collisionless Disk.- 9. Calculation of the Matrix Elements for the Three-Waves Interaction.- 10. Derivation of the Formulas for the Boundaries of Wave Numbers Range Which May Take Part in a Decay.- 11. Derivation of the Kinetic Equation for Waves.- 12. Table of Non-Jeans Instabilities (with a Short Summary).- References.- Additional References.
(Volume II).- Non-Jeans Instabilities of Gravitating Systems.- VI Non-Jeans Instabilities of Gravitating Systems.- VII Problems of Nonlinear Theory.- II Astrophysical Applications.- VIII General Remarks.- IX Spherical Systems.- X Ellipsoidal Systems.- XI Disk-like Systems. Spiral Structure.- XII Other Applications.- 1. Collisionless Kinetic Equation and Poisson Equation in Different Coordinate Systems.- 2. Separation of Angular Variables in the Problem of Small Perturbations of Spherically Symmetrical Collisionless Systems.- 3. Statistical Simulation of Stellar Systems.- 3.1. Simulation of Stellar Spheres of the First Camm Series.- 3.2. Simulation of Homogeneous Nonrotating Ellipsoids.- 4. The Matrix Formulation of the Problem of Eigenoscillations of a Spherically-Symmetrical Collisionless System.- 5. The Matrix Formulation of the Problem of Eigenoscillations of Collisionless Disk Systems.- 5.1. The Main Ideas of the Derivation of the Matrix Equation.- 5.2. "Lagrange" Derivation of the Matrix Equation.- 6. Derivation of the Dispersion Equation for Perturbations of the Three-Axial Freeman Ellipsoid.- 7. WKB Solutions of the Poisson Equation Taking into Account the Preexponential Terms and Solution of the Kinetic Equation in the Postepicyclic Approximation.- 7.1. The Relation Between the Potential and the Surface Density.- 7.2. Calculations of the Response of a Stellar Disk to an Imposed Perturbation of the Potential.- 8. On the Derivation of the Nonlinear Dispersion Equation for Collisionless Disk.- 9. Calculation of the Matrix Elements for the Three-Waves Interaction.- 10. Derivation of the Formulas for the Boundaries of Wave Numbers Range Which May Take Part in a Decay.- 11. Derivation of the Kinetic Equation for Waves.- 12. Table of Non-Jeans Instabilities (with a Short Summary).- References.- Additional References.